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Abstract

I study the aggregate and distributional effects of clean energy subsidies on US
residential rooftop solar panel adoption. Using installation-level data on residential
solar system installations, I provide new evidence on learning spillovers and estimate
learning elasticities to discipline a heterogeneous agent general equilibrium model
with incomplete markets, irreversible adoption, endogenous cost declines, and unequal
pollution damage exposures. Calibrated to US data, the model quantifies how alter-
native subsidy designs and financing schemes affect adoption, aggregate welfare, and
the distribution of gains across households. Uniform refundable subsidies financed
by a flat labor income tax raise aggregate welfare and accelerate adoption, while
progressive financing or nonrefundable credits reduce support among lower-wealth
households. When pollution damages are incorporated, the same subsidy becomes
universally welfare-improving and strongly progressive. Accounting for dynamic
spillovers and local pollution externalities reveals that clean energy subsidies can en-
hance both efficiency and equity, contrary to the view that they are inherently regressive.
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1 Introduction

Renewable (“clean”) energy technology subsidies are among the most widely used en-

vironmental policies in the United States (US), yet their aggregate efficiency and welfare

implications remain uncertain. This paper asks: How do such subsidies affect technology

adoption and welfare across the joint distribution of income and wealth in the US? Focusing

on residential rooftop solar panel adoption, I quantify both the direct fiscal incidence and the

indirect welfare consequences that arise through general equilibrium effects, cost declines,

and pollution externalities. I find that uniform refundable subsidies financed by a flat income

tax raise aggregate welfare and accelerate adoption, whereas progressive financing or non-

refundable subsidy designs slow diffusion and reduce welfare. When pollution damages are

incorporated, the same subsidy becomes universally welfare-improving and progressive, as

cleaner air yields the largest gains for more exposed households.

These results challenge the perception that clean energy technology subsidies are inherently

regressive. In the US, the top income quintile receives over half of all federal tax credits

for residential energy efficiency improvements, according the Internal Revenue Service’s

(IRS) Statistics of Income (SOI) data. Although these programs are financed primarily

by progressive income taxes, they function as transfers from the general taxpayer base to

households that are already affluent enough to adopt costly clean technologies. In this sense,

the benefit incidence of subsidies appears regressive even if the tax incidence of financing is

not.

Yet this static view overlooks two key externalities. First, wealthier households consume

more energy and thus are responsible for a larger share of residential emissions. Thus,

subsidizing their adoption of clean energy technologies can yield larger emissions reductions.

Because poorer households are more exposed to local air pollution, these environmental

improvements disproportionately benefit them. Second, early adopters create learning-by-

doing spillovers that reduce future installation costs, making adoption more affordable for

later – often less wealthy – households. In dynamic general equilibrium, policies that initially

appear to favor the rich may therefore yield greater long-run gains for the poor.

To quantify these mechanisms, I develop and calibrate a heterogeneous agent dynamic

general equilibrium model with incomplete markets, irreversible technology adoption, endoge-

nous cost reductions from learning-by-doing, and unequal exposure to pollution damages.

Using detailed microdata on household income, wealth, and expenditures, installation-level

solar costs, and the timing of federal and state policy changes, I parameterize the model and

evaluate alternative subsidy designs and financing schemes—comparing refundable, nonre-

fundable, and income-capped credits under flat versus progressive tax financing. The analysis
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captures both the aggregate efficiency and heterogeneous welfare implications of policies that

subsidize clean technology adoption.

Broadly, prior research falls into two categories: (i) empirical studies on the aggregate

and distributional effects of environmental and clean energy policies, and (ii) quantitative

macroeconomic analyses of aggregate and heterogeneous effects of climate change policies

in general equilibrium. My paper connects these strands by linking empirical evidence on

technology diffusion and pollution exposure to a structural dynamic general equilibrium

framework that captures both aggregate and heterogeneous welfare effects of clean energy

technology subsidies.

Borenstein and Davis (2024) extensively document adoption patterns and the distribution

of clean energy tax credits across income groups in the US, showing that participating and

subsidy receipt rise sharply with income. Their findings highlight the apparent regressivity

of residential clean energy incentives, but do not quantify broader welfare, such as health

co-benefits from reducing local air pollution, or general equilibrium effects. Vona (2023)

provides a comprehensive overview of the empirical evidence on the multiple effects of climate

policies on well-being, emphasizing that clean-energy and energy-efficiency subsidies often

reinforce the unequal distribution of benefits when households face borrowing constraints

and high up-front adoption costs. Similarly, Levinson (2019) shows in a static framework

that taxing energy use would be both more cost effective and less regressive than subsidizing

energy efficient appliances or taxing inefficient appliances. These studies underscore the policy

relevance of distributional incidence but stop short of modeling the dynamic mechanisms –

such as learning-by-doing and endogenous cost declines – that determine how regressivity

evolves over time. My analysis builds on this evidence by explicitly modeling these dynamics

within a general equilibrium framework.

A growing set of empirical papers examines these mechanisms more directly. The paper by

Gao, Rai, and Nemet (2022) provides one of the few empirical analyses of learning-by-doing

effects in US residential solar installations, finding that economies of scale reduce both

hardware and non-hardware costs. Their results suggest that early adopters generate localized

cost spillovers that could make subsequent adoption more affordable for later adopters. On

the environmental side, Banzhaf, Ma, and Timmins (2019) review the extensive literature

documenting the strong association between ambient air pollution, poverty, and race – the

so-called environmental justice gap. Because poorer households tend to live in areas with

higher local air pollution, they are likely to gain disproportionately from policies that reduce

emissions from residential energy use. These empirical findings motivate the two externalities

at the core of my model – learning-by-doing and unequal pollution exposure – and provide

the basis for the parameters I use to calibrate the dynamic effects of clean-energy subsidies.
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A separate literature develops quantitative macroeconomic models to analyze the aggregate

and distributional effects of climate policies in a general equilibrium framework. Most of these

papers focus on carbon pricing rather than subsidizing clean energy technologies. Känzig

(2023) finds that a restrictive carbon policy shock raises energy prices, reduces emissions,

spurs clean innovations, but also lowers economic activity and disproportionately burdens

poorer households. Benmir and Roman (2022) examine a carbon pricing path that achieves

net-zero emissions in the US by 2050 and show that it induces large redistributions of income

and wealth from poorer to richer households. Fried, Novan, and Peterman (2024) analyze how

alternative uses of carbon tax revenues affect welfare across and within generations, showing

that optimal revenue recycling can mitigate regressivity by reducing distortionary taxes

on capital and increasing the progressivity of labor taxation. In earlier work, Fried, Novan,

and Peterman (2018) highlight the importance of not only long-run outcomes, but also the

transitional welfare effects of how carbon tax revenues are recycled. Using detailed household

expenditure and emissions data, Belfiori, Carroll, and Hur (2024) similarly document that

low-income households have higher emissions per dollar of spending, making a uniform carbon

tax regressive unless revenues are redistributed progressively. Together, these papers identify

an efficiency-equity trade-off similar to the one I study, but they do so for carbon pricing.

My paper extends this analysis to subsidy-based instruments – the main policy tool used in

the US – and examines how dynamic cost declines and pollution heterogeneity reshape that

trade-off.

While economists generally view carbon pricing as the most efficient instrument for

reducing emissions, in practice – particularly in the US – climate and environmental policies

have relied far more on subsidies for clean energy technologies. As Borenstein and Davis

(2024) emphasize, relatively little is known about the economic efficiency or the distributional

consequences of such subsidy-based approaches. My contribution is to fill this gap by evaluating

clean-energy subsidies within a dynamic, heterogeneous agent general equilibrium model

that embeds both learning-by-doing and pollution externalities. This approach allows me

to quantify how the fiscal design of subsidies shapes aggregate welfare and household-level

outcomes simultaneously.

More recent work examines heterogeneity in the adoption of clean energy technologies

directly. Kuhn and Schlattmann (2024) develop a quantitative life-cycle model with unequal

adoption rates of carbon-neutral goods by income, highlighting the reduction-redistribution

trade-off inherent in different policy mixes. Lanteri and Rampini (2025) study clean technology

investment by heterogeneous firms facing financial frictions in a dynamic general equilibrium

model. They find that constrained firms optimally invest in older, dirtier technologies,

generating a positive relationship between firm size and energy efficiency. Their framework
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provides a natural laboratory for analyzing the distributional effects of environmental policy

across firms, although they that exercise for future work. My paper complements these papers

by emphasizing the dual role of learning and pollution externalities in shaping adoption

dynamics and welfare and by focusing on households rather than firms.

In summary, this paper bridges the micro-level empirical literature on adoption and

pollution with the macroeconomic literature on environmental policy in general equilibrium.

It contributes by unifying these approaches in a single quantitative framework that links

micro evidence on learning and pollution exposure to macro-level welfare outcomes, providing

new insights into how clean-energy subsidies affect both efficiency and the distribution of

welfare gains.

My analysis yields three main contributions. First, I provide new empirical estimates of

localized learning-by-doing in US residential solar panel installations. Using installation-level

data merged with state and utility policy shocks – changes in subsidy generosity, eligibility,

or program timing that were plausibly exogenous to local installation trends – I find that

each doubling of cumulative installed capacity reduces system costs by about 7%, with

stronger effects when adoption is policy-driven rather than market-driven. Second, I develop

a quantitative heterogeneous agent model that jointly captures private adoption incentives,

dynamic cost spillovers, heterogeneous pollution exposure, and general equilibrium feedbacks.

Third, I use the model to evaluate the aggregate and distributional welfare consequences of

alternative subsidy and financing arrangements.

The results show that uniform refundable subsidies financed by flat labor income taxes raise

aggregate welfare and accelerate adoption, whereas progressive financing slows down adop-

tion and reduces welfare gains for liquidity-constrained households by depressing short-run

wages and transfers. Nonrefundable tax credits, which mirror the structure of the US federal

residential solar credit, further exclude low-income households but do not slow down diffusion.

Income-capped subsidies, while intended to improve the distribution of gains, slow down adop-

tion, weaken learning spillovers, and generate aggregate welfare losses that disproportionately

affect middle-wealth households. When pollution damages are included, the nonrefundable

uniform subsidy becomes universally welfare-improving and strongly progressive, as cleaner

air disproportionately benefits households with higher exposure to local pollution. Together,

these results show that the perceived regressivity of residential solar subsidies reflects a partial

equilibrium perspective. Once dynamic cost declines and pollution externalities are accounted

for, the equity-efficiency trade-off in clean energy policy becomes much weaker. Although the

analysis focuses on residential solar adoption, the framework is general and can be applied to

study the diffusion of other clean or productivity-enhancing technologies—such as electric

vehicles, energy storage, or digital infrastructure—where adoption frictions, learning spillovers,
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and heterogeneous financing constraints shape both efficiency and equity.

The remainder of the paper is structured as follows. In Section 2, I summarize the data

that motivates the research questions and provide background for the model. In Section

3, I outline the structural model that I use to answer my research questions. In Section

4, I describe the complete characterization of the model used for quantitative analysis, its

calibration and fit to the data, and present the baseline model simulations. In Section 5,

I present the quantitative results on the distributional and welfare effects of a benchmark

uniform subsidy under uniform financing scheme. In Section 6, I conduct policy experiments to

evaluate the effectiveness of different policy mixes in achieving the outlined policy objectives

and majority support. Finally in Section 7, I conclude and discuss the implications of the

results for policy design and implementation.

2 Data and Empirical Motivation

Understanding how energy use, clean-technology adoption, and pollution exposure vary

across income groups in the US is crucial for assessing the equity implications of clean energy

policies. Table 1 summarizes these distributions for 2015 – the earliest year with complete

data – using multiple cross-sectional data sources.

First, using data from the US Census Bureau’s (2023) 2015 American Community Survey

(ACS) 5-Year Estimates, I construct income quintiles based on the upper income limits of

quintiles summarized in Table B19080.1 I report the share of aggregate income for each

income quintile from the US Census Bureau’s (2023) 2015 ACS Table B19082 in the first row

of Table 1. The top income quintile accounts for more than half of the aggregate income in

the US.

Next, I combine the US Energy Information Agency’s (2023) 2015 Residential Energy

Consumption Survey (RECS) microdata with income categories aligned to the same quintiles.2

Weighting by household survey weights, I calculate each group’s share of total residential

energy consumption and report it in the second row of Table 1. The top quintile accounts for

roughly one quarter of total household energy use.

I then compute adoption and subsidy patterns for residential rooftop solar panel de-

ployment across income quintiles. Using the RECS 2015 indicator for on-site solar power

generation, I calculate the share of total adopters by income quintile. Adoption rises sharply

1For 2015, these limits are $17,929, $35,583, $62,600, $108,429, and the lower limit for top 5% is $146,778.
2Annual household income is reported as a categorical variable in the RECS data, and I group households

according to the income quintile’s upper limits as closely as possible. Thus, the upper income limits for the
quintiles I report from the RECS data are $20,000, $40,000, $60,000, $100,000, and the lower limit for the
top 5% is $140,000.
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Table 1: Descriptive statistics for the income quintiles in the US

Income Percentile Bottom 20% 20%-40% 40%-60% 60%-80% Top 20% Top 5%

Share of aggregate income 3.17 8.42 14.37 22.83 51.21 22.81
Share of residential energy consumption 12.59 18.16 13.07 19.75 24.42 12.01
Share of rooftop solar adoptors 0.53 3.42 9.26 16.87 43.75 26.19
Share of residential clean energy credits 0.48 4.11 4.08 21.75 48.99 20.59
Mortality damages per capita (2020 dollars pp) 4,811 3,910 3,103 2,769 2,354 NA

Notes: Reported shares and rates are in percentages, except for the mortality damage per capita
values, which is in 2020 US dollars per person (pp). NA indicates not available.

with income, as shown in the third row of Table 1. The top income quintile represents nearly

half of all rooftop solar adopters.

To measure the distribution of federal Residential Clean Energy Credits (RCECs), I use

the US Internal Revenue Service (2023) 2015 SOI data, aligning income categories as closely

as possible with the quintiles above. I calculate each income group’s share of total RCEC

value by dividing the total amount of RCECs claimed by each group by the total amount of

RCECs claimed by all income groups and report it in the fourth row of Table 1. The top

quintile receives almost half of all RCEC value. Because these credits are non-refundable –

limited by tax liability – they primarily benefit high-income households.

Together, these facts show that higher-income households consume more energy, adopt

clean technologies earlier, and capture most federal subsidies. Yet, they also account for a

larger share of emissions. Since lower-income households experience greater exposure to local

air pollution, subsidizing cleaner technologies for high-income households could still generate

progressive environmental benefits.

To document this channel, I merge county-level mortality damages from the Air Pollution

Emission Experiments and Policy Analysis (AP4) model, detailed in Dennin et al. (2024),

with county-level median income data from the US Census Bureau’s (2022) 2017 ACS 5-Year

Estimates. Mortality damages per capita decline monotonically with income – from $4,811
for the bottom quintile to $2,354 for the top quintile – as shown in the last row of Table 1,

confirming that pollution damages are disproportionately borne by poorer households. These

stylized facts motivate the model’s two central externalities: learning-by-doing and unequal

pollution exposure.

2.1 Benefits of Residential Rooftop Solar Panel System Deploy-

ment

Deploying solar panels for on-site power generation provides both private and social

benefits. Private benefits include reduced electricity bills, increased property values, and
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Table 2: Average 2015 energy expenditure shares of income groups in the US

Income Percentile Bottom 20% 20%-40% 40%-60% 60%-80% Top 20% Top 5%

Share of energy expenditure in total expenditure 8.5 6.4 5.0 4.2 3.3 2.2

Note: Reported shares are in percentages.

reduced exposure to electricity price volatility. Social benefits include reduced emissions of

greenhouse gases and local air pollutants, reduced strain on the electricity grid, and increased

energy security.

2.1.1 Private Benefits

Using the 2020 RECS, I regress household electricity expenditure on a solar indicator

with state fixed effects and standard controls. Households with on-site solar spend roughly

$700 less per year on grid electricity, which is about half the sample average of $1,400 (Table

A.1). This difference is purely accounting, not causal, but illustrates magnitude.

For calibration, the key fact is that energy savings are meaningful relative to household

budgets. Using the 2015 Consumer Expenditure Survey (CES) by the Bureau of Labor

Statistics (2024), I compute the share of residential energy in total expenditure by income

quintile. As shown in Table 2, the bottom income quintile devotes 8.5% of total expenditure to

energy, compared with only 3.3% for the top quintile. These differences anchor heterogeneous

marginal utilities of consumption in the model.

2.1.2 Social Benefits

Social gains stem mainly from avoided local air pollution. In 2023, the residential sector

accounted for 15% of end-use energy consumption in the US, according to US Energy

Information Administration (2024). Much of this energy is generated from fossil fuels, which

emit local air pollutants harmful to human health, such as particulate matter (PM).3 Dennin

et al. (2024) estimate that the marginal damage associated with an additional ton of PM2.5

emissions in the US to be between $73,200 and $133,000 per ton in 2020 dollars. Thus, given

the significant share of PM2.5 emissions from the residential sector, reducing emissions from

this sector could yield health benefits for local communities.

3Particle pollution, also known as particulate matter (PM), is a mixture of solid particles, such as dust,
dirt, and soot, and liquid droplets found in the air. Breathing in particle pollution can be harmful to human
health, as it can cause heart attacks, trouble breathing, lung cancer, and problems with babies. Smaller
particles, with diameters that are 2.5 micrometers or smaller, called PM2.5, pose the greatest health risks,
because they can penetrate deep into the lungs and the bloodstream.
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Figure 1: Median price and size of residential solar panel system installations in the US per
quarter, 2000-2022

Note: The shaded area represents the 25th and 75th percentiles of the distribution of prices
of residential solar panel installations.

2.2 Cost of Residential Rooftop Solar Panel System Installations

The cost of installing solar panels for on-site power generation is a significant barrier to

adoption for many households. The total cost includes the following costs: the solar panels

themselves, the inverter, the mounting hardware, the wiring, the installation labor, and the

permitting and inspection. The price of solar panel installations has been decreasing over

time due to technological advancements and economies of scale, even before accounting for

government incentives.

Using the National Renewable Energy Laboratory’s (NREL) (2023) 2022 Tracking the

Sun report data, Figure 1 shows the median installation prices per watt (W) and the median

system size of residential solar panels installations in kilowatts (kW) in the US from 2000 to

2022. The figure shows that the median installation price of residential solar panels in the US

has declined by almost 65% from 2000 to 2022, while the median system size increased by

nearly 75%. This joint trend highlights that, although unit costs fell, households increasingly

adopted larger systems, so the decline in total installation costs was slower.

Using these two series on the price and capacity of residential solar installations, I calculate

two median total costs of residential solar installation measures in the US from 2000 to 2022.

The first measure is the median gross total cost, which is the product of the median total
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Figure 2: Ratio of median gross and median net system prices of residential solar PV systems
to median annual household income

installation price per watt and the median system size. The second measure is the median

net total cost, which accounts for the state- and utility-level incentives and rebates deducted

from the gross total cost for residential solar installations. Importantly, the net total cost

measure does not account for the federal investment tax credit (ITC) for residential solar

installations, which is 30% of the gross total cost in 2022.

To assess affordability, Figure 2 reports the ratio of these cost measures to median

household income in the US, using data from the US Census Bureau’s (2022) ACS 5-Year

Estimates (Table S1901). The figure shows that the median gross cost of a residential solar

installation fell from about 65% of median household income in 2000 to around 36% in

2022. The gap between gross and net costs narrowed over time and eventually disappeared,

reflecting the expiration of many state- and utility-level support programs during this period.

The decline in residential solar installation costs is widely attributed to learning effects.

As more systems were produced and installed, both manufacturing and installation processes

became more efficient, resulting in lower prices over time.
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2.3 Did Rooftop Solar Panel Installations Experience Learning

Effects?

The idea behind the learning effect is straightforward: as cumulative experience with a

technology increases, its costs tend to fall. For technologies with positive externalities — like

residential rooftop solar — this creates a dynamic spillover: subsidizing early adopters can

lower costs for future adopters. In practice, such learning can come from improved installation

techniques, better coordination with permitting and interconnection, streamlined soft costs,

and supply-chain efficiencies.

A growing empirical literature documents these learning effects in residential solar. Nemet

et al. (2016) show that experienced installers consistently quote lower prices than novice

installers, holding system characteristics constant. The cheapest decile of systems is dispropor-

tionately installed by firms with extensive prior experience, suggesting accumulated know-how

translates into lower prices. O’Shaughnessy (2018) finds that in more concentrated local

markets, average installation costs are lower, consistent with high-volume firms moving down

their cost curves; however, if markets become too concentrated, reduced competition can offset

these gains. Nemet et al. (2020) document significant within-county knowledge spillovers

across firms between 2008 and 2014: local cumulative experience lowers installation costs,

especially for firms above a size threshold. They also find smaller, but still present, spillovers

within firms across counties. Bollinger and Gillingham (2023) estimate that each doubling of

installer experience in California reduces soft costs by about $0.12/W, implying nontrivial

but localized learning-by-doing, with relatively weak spillovers across firms. By contrast, Gao,

Rai, and Nemet (2022) argue that traditional learning-by-doing is only part of the story once

one accounts for “learning-by-searching” (innovation and R&D) and “learning-by-interacting”

(supplier networks), suggesting that measured “learning” may bundle several mechanisms.

I test for learning-by-doing in recent US residential rooftop solar installation data by

estimating how installation prices respond to cumulative past installations. The baseline

learning model assumes that installation costs decline with cumulative experience according

to a power law, as formulated by Arrow (1962):

pt = p0 · I−ξ
t · exp(−λt), (1)

where pt is the net installation price per W at time t (after rebates and incentives), p0 is

the initial price, It is cumulative installed capacity before t (in number of systems or total

kW), ξ is the learning-by-doing elasticity, and λ captures exogenous secular cost declines

over time (global PV cost improvements, supply chain maturation, etc.) unrelated to local

experience. The implied learning rate is 1− 2−ξ, the percent cost reduction from a doubling
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of cumulative installed capacity. Mukoyama (2006) provides a summary of other functional

forms used in the learning literature.

Because learning may operate at multiple margins, I allow for both state-level and firm-level

experience. Let s(i) denote the state of installation i, and f(i) the installer firm. I estimate

the following specification using installation-level data from NREL’s (2023) Tracking the

Sun data, expanded to include a measure of local incentive generosity gs(i),t(i) generated from

state- and utility-level rebate programs data from North Carolina Clean Energy Technology

Center’s (2025) Database of State Incentives for Renewables & Efficiency (DSIRE):

log pi = αj(i)− ξstate log
(
Istates(i),t(i)−12

)
− ξfirm log

(
Ifirmf(i),t(i)−12

)
−λt(i)+γgs(i),t(i)+X ′

iθ+ εi, (2)

where pi is the net price per watt of installation i, αj(i) are fixed effects (state, county, or

firm, depending on the column), Istates(i), , t− 12 is cumulative installed residential capacity

in state s(i), lagged 12 months, Ifirmf(i), , t− 12 is cumulative capacity installed by firm f(i)

lagged 12 months, ξstate and ξfirm are the associated elasticities, t(i) is the installation month,

λ is the common time-decay parameter, gs(i),,t(i) is contemporaneous incentive generosity in

state s(i), Xi includes installation-level controls (system size, hardware, financing, etc.), and

εi is the error term. I describe the incentive generosity variable construction in Appendix A.1.

A simple OLS estimate of equation (2) may be biased. Areas (or firms) with lower costs

may attract more installations, mechanically generating a negative relationship between price

and cumulative experience even without causal learning. Local demand shocks, installer

entry/exit, or policy changes could also jointly move both prices and cumulative adoption.

To address these endogeneity concerns, I estimate an instrumental variables (IV) version of

the model.

The IV strategy uses policy timing shocks to instrument for local cumulative installed

capacity. I construct, for each location j (state or county) and month t, a binary “policy

shock” variable equal to 1 if a new residential solar incentive (rebate, grant, tax credit, net

metering provision) begins in j in month t, and 0 otherwise. These policy onsets are taken

from the DSIRE (2025). I lag these shocks by 12 months so that they predict the stock of

cumulative installations at t without directly moving prices in t. Appendix A.1.2 details

construction of both the policy shock series and the incentive generosity measure.

Intuitively, a state that rolled out a new incentive 12 months ago should have accumulated

more installs by now, even if current prices are high, and that boost in cumulative installed

capacity may generate learning-driven cost reductions today. The key advantage is that the

timing of policy introductions is plausibly exogenous to unobserved local cost shocks in later

periods.
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The two-stage least squares (2SLS) design is:

log(Istates(i),t−12) = µs(i),t−12 + πZs(i),t−12 + ρgs(i),t−12 + δt+Ws(i),t−12
′θ + us(i),t−12, (3)

where Zs(i),t−12 is the lagged policy shock indicator, µs(i),t−12 are fixed effects, gs(i),t−12 controls

for the generosity of incentives, Ws(i),t−12 includes additional covariates, and us(i),t−12 is the

error term. The first stage links cumulative installed capacity to lagged policy shocks,

conditional on fixed effects, current incentive generosity, and time trends.

The second stage replaces Istate in equation (2) with its fitted values:

log pi = αj(i)−ξstate log
(
Îstates(i),t(i)−12

)
−ξfirm log

(
Ifirmf(i),t(i)−12

)
−λt(i)+γgs(i),t(i)+X ′

iθ+εi, (4)

where Îstate are the predicted cumulative installations from equation (3). In both stages I

include contemporaneous incentive generosity gj,t so that any direct price effect of current sub-

sidies is partialled out. Identification then comes from the timing of past policy introductions,

not from the current level of subsidies.

The exclusion restriction is that, conditional on current incentive generosity, fixed effects,

and common time trends, lagged policy onsets affect current installation prices only through

their impact on cumulative installed capacity (i.e., learning-by-doing), and not through any

direct price subsidy in period t. This is most credible when policies are primarily adoption

incentives rather than direct per-watt price buydowns at the time of installation. I therefore

interpret the IV estimates as the causal effect of cumulative installed capacity on prices under

policy-driven expansion, rather than under purely organic market growth.

Table 3 reports the main results. Columns (1), (3), and (5) present OLS estimates with

different fixed effects and columns (2), (4), and (6) present the corresponding IV estimates.

State fixed effects are used in columns (1)–(4), and county fixed effects in (5)–(6). The

first-stage F-statistics in the IV columns (2), (4), and (6) exceed 10, indicating strong

instruments.

The estimates provide mixed but broadly supportive evidence of learning-by-doing.

Location-level cumulative installations (state or county) generally exhibit positive, sta-

tistically significant elasticities: higher cumulative capacity is associated with lower prices.

The magnitudes of these elasticities imply learning rates between roughly 1 and 8% cost

reduction per doubling of cumulative capacity, depending on the specification.

A key pattern is that IV estimates of state-level learning elasticities are substantially

larger than their OLS counterparts. In columns (2) and (4), the IV coefficient on lagged

cumulative state capacity is roughly four times the OLS coefficient in columns (1) and (3). At

the county level, the IV estimate in column (6) is nearly six times the OLS estimate in column
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Table 3: Learning-by-Doing in Residential PV with Exogenous Unexplained Decay: OLS and
IV with Fixed Effects

Independent variables (1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

log Cumulative Installs (Firm, 12m lag) −0.0073 −0.0073 −0.0097 −0.0097 −0.0073 −0.0073
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

log Cumulative Installs (State, 12m lag) 0.0226 0.1027 0.0244 0.0996
(0.0022) (0.0054) (0.0022) (0.0055)

log Cumulative Installs (County, 12m lag) 0.0145 0.1249
(0.0014) (0.0055)

t 0.0029 0.0029 0.0030 0.0030 0.0031 0.0031
(0.0001) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000)

Policy Generosity ×10−4 −0.0034 −0.0034 −0.0034 −0.0034 −0.0091 −0.0091
(0.0002) (0.0002) (0.0002) (0.0002) (0.0005) (0.0005)

Has DC Optimizer 0.0303 0.0303 0.0347 0.0347
(0.0022) (0.0022) (0.0022) (0.0022)

Ground Mounted 0.0229 0.0229 0.0308 0.0308
(0.0053) (0.0069) (0.0054) (0.0069)

Has Microinverter 0.0098 0.0098 0.0109 0.0109
(0.0021) (0.0024) (0.0022) (0.0024)

Inverter Loading Ratio 0.0418 0.0418 0.0425 0.0425
(0.0038) (0.0040) (0.0038) (0.0040)

log Size −0.1040 −0.1040 −0.0897 −0.0897
(0.0016) (0.0019) (0.0016) (0.0020)

Has Tracking Bin −0.3999 −0.3999 −0.4023 −0.4023
(0.0089) (0.0298) (0.0089) (0.0298)

First stage

Policy Shock (State, 12m lag) −0.7520 −0.7518
(0.0070) (0.0069)

Policy Shock (County, 12m lag) −1.1759
(0.0141)

F - Statistic 11,705.12 11,701.16 6,995.60
Number of observations 874,991 874,991 874,991 874,991 874,991 874,991
R2 0.060 0.013 0.053 0.013 0.058 0.008
Location FE state state state state county county

Notes: Robust standard errors in parentheses. Coefficients with robust standard errors in parentheses. Columns are
numbered with OLS and IV alternating. First-stage coefficients appear only under IV columns. “log Cumulative
Installs (Firm/State/County, 12m lag)” correspond to log(Ifirmf(i),t−12), log(I

state
s(i),t−12), and log(Icountyc(i),t−12). “Policy Shock

(State/County, 12m lag)” equals 1 if a new residential PV incentive began in that entity 12 months earlier.

(5). This suggests that OLS attenuates the true learning effect, likely due to simultaneity and

measurement error: places with already-low prices attract adoption even absent new learning,

biasing OLS downward. By contrast, policy-driven adoption (the IV source of variation)

appears to generate stronger subsequent cost declines.

My preferred estimate is the IV specification with state fixed effects in column (2). It

addresses endogeneity using policy timing shocks, absorbs persistent state-level heterogeneity,

and retains meaningful cross-time variation in cumulative installations. The implied state-
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level learning elasticity of 0.1027 corresponds to a learning rate of about 7% per doubling of

cumulative capacity. This value disciplines the model parameter ξ, and the estimated common

time-decay term λ (around −0.003 per month) implies secular cost declines of roughly 4% per

year that are not driven by local adoption. As expected, higher contemporaneous incentive

generosity gs(i),t(i) is associated with lower prices, though the magnitudes are modest. Other

controls behave as expected: larger systems are cheaper per watt, and higher-end technologies

(e.g. optimizers, microinverters) are more expensive.

In summary, the regression evidence supports three conclusions. First, there is economically

meaningful learning-by-doing at the state level: cumulative local adoption lowers prices for

future adopters. Second, this effect is stronger when cumulative installations are driven by

policy shocks rather than by purely endogenous market expansion. Third, secular cost declines

unrelated to local adoption remain important. These findings align with the broader literature

and provide quantitative discipline for the model: they pin down how much today’s adopters

lower tomorrow’s prices for everyone else.

Taken together, these empirical patterns provide the foundation for the model developed

in the next section. The descriptive evidence shows that (i) clean-technology adoption and

subsidy benefits are highly skewed toward high-income households, (ii) poorer households

face higher exposure to pollution damages, and (iii) installation costs decline with cumulative

experience, consistent with learning-by-doing. These observations highlight two externalities –

technological learning and unequal pollution exposure – that shape the equity and efficiency of

energy transition policies but are not captured in static incidence analyses. To quantify their

joint implications for adoption dynamics and welfare, I now develop a heterogeneous agent

dynamic general equilibrium model with incomplete markets, irreversible clean technology

investment, endogenous cost declines, and pollution damages.

3 Model

Motivated by these empirical observations, I develop a heterogeneous agent dynamic

stochastic general equilibrium (DSGE) model with incomplete markets in the Bewley-Huggett-

Aiyagari tradition, building on Bewley (1977), Huggett (1993), and Aiyagari (1994), augmented

to include costly clean energy technology adoption and environmental externalities. Time

is discrete and the horizon is infinite. There is a continuum of infinitely-lived households.

Households supply labor, earn wage income, accumulate assets in physical capital, and

rent capital to firms. Labor income is stochastic due to an idiosyncratic productivity shock.

Households self-insure by saving subject to a borrowing constraint.

Households have preferences over consumption and ambient air pollution. Consumption
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requires energy use, and energy use is assumed to be an affine function of good consumption.

This implies (as in Table 2) that low-consumption households spend a higher share of their

budget on energy. Households can meet their energy needs using one of two technologies:

an old fossil (dirty) technology, and a new renewable (clean) technology. Energy from the

two technologies is a perfect substitute. Dirty energy use generates ambient air pollution,

which reduces utility and creates a negative externality. Before the clean technology becomes

available, all households use dirty energy and the economy is in the initial steady state.

Once the clean technology becomes available, households may switch by making a one-time

investment (e.g., installing rooftop solar panels). After adoption, the household uses clean

energy permanently. Clean energy has a lower per-unit cost than dirty energy, but adoption

requires a significant, one-time, and irreversible upfront expenditure. That expenditure cannot

be recovered. The effective adoption cost declines over time as more households adopt, due

to learning-by-doing spillovers. In the long run, all households adopt the clean technology

and the economy converges to a new (terminal) steady state.

Firms combine capital and labor to produce a final good used for both consumption and

investment. The externality from dirty energy use is not internalized by firms or consumers,

and instead reduces effective output through pollution damages. This welfare loss is larger

in utility terms for poorer households, given diminishing marginal utility of consumption.

Both firms and households take prices as given. The government taxes labor income and

uses the revenue to subsidize the clean technology’s adoption cost, rebating any surplus as a

lump-sum transfer.

3.1 Consumers

Each household is infinitely lived and has preferences over consumption and ambient air

pollution. At time t, a household’s individual state is described by a vector zt defined as:

zt ≡ (at, ℓt, st) ∈ Z,

where at ∈ A = [0,∞) is the household’s risk-free asset holding at the beginning of period

t, ℓt ∈ L is the idiosyncratic labor productivity endowment at time t, and st ∈ {0, 1} is the
household’s utilization status of the clean energy technology at time t, where st = 0 indicates

that the household is using the fuel combusting old energy technology and st = 1 is the new

clean energy technology. Define the measurable space (Z,B(Z)), where:

B(Z) = B(A)× P (L)× P ({0, 1}),
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whereB(A) is the Borel σ-algebra onA and P (·) the power set. The cross-sectional distribution
of households over the state space at time t is represented by a probability measure Φt ∈M,

whereM is the set of all Borel probability measures on (Z, B(Z)). For any measurable set

B ∈ B(Z), Φt(B) is the fraction of households with states in B at time t. I will denote Φt(B)

by Φt when there is no ambiguity. Aggregate objects are computed as integrals with respect

to the cross-sectional measure over states, following Huggett (1993).

Each household supplies one unit of time endowment inelastically to the labor market

with labor productivity ℓt that follows a finite-state Markov chain with transition matrix

π(ℓ′|ℓ) and a unique invariant distribution Π(ℓ). Households derive utility from consumption

and ambient air pollution according to:

E0

[
∞∑
t=0

βtU(ct, Xt)

]
,

where β ∈ (0, 1) is the discount factor, ct is consumption at time t, and Xt denotes the

aggregate ambient air pollution at time t. U(·, ·) is a strictly increasing and concave one-period

utility function in good consumption, strictly decreasing and convex in pollution, and E0 is

the mathematical expectation conditioned on the consumer’s time-0 information.

The household budget constraint is:

ct + at+1 + q̄tet(1− st) + q
t
etst + pt(1− τt)St = wt(1− τ ℓ)ℓt + (1 + rt)at + Tt,

subject to the borrowing constraint:

at+1 ≥ a,

where et = e(ct) maps consumption to energy demand, wt and rt denote the wage and

interest rate, respectively, q̄t and qt are the exogenous unit energy prices under dirty and

clean energy technologies, respectively, with q
t
< q̄t for all t, s

i
t ∈ {0, 1} is the household’s

utilization status of the clean technology, where sit = 0 indicates that the household is using

the fuel combusting old energy technology and sit = 1 is the new clean energy technology,

Si
t ∈ {0, 1} is the irreversible binary technology adoption decision, pt is the one-time clean

energy technology adoption cost, τt is the uniform tax credit (subsidy) for the clean energy

technology investment cost, τ ℓ is the exogenous labor income tax rate, and Tt is the lump-sum

transfer. The borrowing limit a ≤ 0 is exogenous and the same for all households.

The discrete adoption choice St is the main deviation from a standard Aiyagari model. St

is chosen at the start of the period, is irreversible, and permanently upgrades the household
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to the clean technology. The law of motion is:

St = st+1 − st, with st+1 ≥ st for all t.

Irreversibility is a natural first approximation to lumpy household-level adoption (e.g., rooftop

solar). Extensions could allow depreciation or replacement.

3.2 Producers

A unit mass of competitive firms produces the consumption good using capital and labor:

The production function is:

Yt = F (Kt, Lt),

where Yt is the final output, Kt and Lt are capital and labor demands, respectively, and

F (·, ·) is a constant returns to scale production function with inputs Kt and Lt. Firms take

factor prices (rt, wt) as given and maximize static profits each period.

3.3 Government

The government taxes labor income at rate τ ℓt , part of the revenue to subsidize clean-

technology adoption at rate τt, and rebates the remainder uniformly as Tt to each household

in each period t. Thus, the government budget constraint is:∫
Z
τ ℓℓtdΦt =

∫
Z
(Tt + τtptSt) dΦt, ∀ t. (5)

3.4 Ambient Air Pollution

Ambient air pollution, Xt, is determined by the flow of energy in period t with the

following mapping:

Xt = Ω

(∫
Z
e(ct)(1− st)dΦt

)
, (6)

where Ω(·) is increasing. Pollution is thus a within-period externality: only energy consumed

via the dirty technology generates Xt, and the disutility is contemporaneous.

3.5 Learning-by-Doing Spillover

The one-time adoption cost pt declines with cumulative adoption due to learning-by-doing

spillover. As in subsection 2.3, I assume a power-law learning function. Cumulative adoption
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before period t, denoted by Zt, is given by:

Zt =

∫
Z
stdΦt, (7)

and include an exogenous time decay component as in equation (1). The adoption cost

function is:

pt = p0 · Z−ξ
t · exp(−λt), (8)

where p0 > 0 is the initial adoption cost, ξ > 0 is the learning-by-doing elasticity that captures

the rate of cost reduction with each doubling of cumulative adoption, and λ > 0 captures the

secular cost declines unrelated to local spillovers, such as global supply chain improvements

and technological change. As more households adopt the clean technology, pt falls for future

adopters. This spillover makes adoption socially beneficial beyond the private gain and means

that subsidies do more than redistribute cash: they accelerate cost declines for later adopters.

3.6 Market Clearing

In equilibrium, the market clearing conditions for the capital and labor markets are:

Kt =

∫
Z
atdΦt,

Lt =

∫
Z
ℓtdΦt

where the left-hand side is factor demand and the right-hand side is the factor supply. Denote

the market-clearing quantities of aggregate capital and labor by Kt and Lt, respectively.

Goods market clearing condition is:∫
Z

[
ct + q̄e(ct)(1− st) + qe(ct)st + ptSt

]
dΦt = F (Kt, Lt) + (1− δ)Kt −Kt+1,

where δ is the depreciation rate of aggregate capital stock.

3.7 Formulation

The model admits a recursive formulation. A household’s decision problem depends on its

individual state zt = (at, ℓt, st) and on the aggregate distribution Φt. Φt is the only aggregate

state: Xt is a contemporaneous flow determined by current dirty energy use (and therefore

by Φt), so it does not enter as an independent state. Formal definitions of the initial and

terminal stationary competitive equilibria are provided in Appendix B.1.
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3.7.1 Transitional Dynamics

The main object of interest is the transition from the initial steady state with st = 0 for all

households (no clean technology) to the terminal steady state with st = 1 for all households

(full adoption). During the transition, households choose the irreversible adoption decision

St ∈ 0, 1 such that

st+1 = st + St ≥ st.

The Bellman equation for a household that has not yet adopted (state (at, ℓt, 0) at the

start of period t) is:

Vt(at, ℓt, 0; Φt) =

max



max
ct≥0

U(ct, Xt) + βEt {Vt+1[at+1, ℓt+1, 0; Φt+1]|ℓt}

subject to at+1 = wt(1− τ ℓ)ℓt + (1 + rt)at + Tt − ct − q̄te(ct),

max
ct≥0

U(ct, Xt) + βEt {Vt+1[at+1, ℓt+1, 1; Φt+1]|ℓt}

subject to at+1 = wt(1− τ ℓ)ℓt + (1 + rt)at + Tt − ct − q̄te(ct)− pt(1− τt)

subject to Φt+1 = Γt(Φt),

(9)

where Γt :M→M is the aggregate law of motion in period t governing the distribution

of households across the state variables’ tomorrow as a function of the distribution today,

and Et is the expectation operator conditioned on the consumer’s time t information. A

household in state st = 0 at the beginning of period t will choose to adopt the clean energy

technology, i.e., set St = 1 and be in state st+1 = 1 at the beginning of period t+ 1, if the

value of adopting is greater than the value of not adopting, i.e., if the second term in the

maximization operator is greater than the first term.

After adoption, the household is in state (at, ℓt, 1) and solves:

Vt(at, ℓt, 1; Φt) =max
ct≥0

U(ct, Xt) + βEt {Vt+1[at+1, ℓt+1, 1; Φt+1]|ℓt} ,

subject to at+1 = wt(1− τ ℓ)ℓt + (1 + rt)at + Tt − ct − qte(ct),

Φt+1 = Γt(Φt).

(10)

Definition 1 Given an initial distribution Φ0 ∈ M, fiscal policies τ ℓ, {τt}∞t=0, and energy

prices {q̄t, qt}
∞
t=0, a competitive equilibrium is a sequence of: household value and policy

functions {Vt, ct, at+1, St, st+1}∞t=0, aggregate factor stocks, {Kt, Lt}∞t=0, prices {wt, rt, pt}∞t=0,

government transfers {Tt}∞t=0, ambient air pollution levels {Xt}∞t=0, adoption stocks {Zt}∞t=0,

and distributions {Φt}∞t=0 ⊆M, such that for all t:
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1. Household optimization. The household’s value function Vt solves the house-

hold Bellman equation given (wt, rt, pt, q̄t, qt, τ
ℓ, τt, Tt, Xt,Φt), with policy functions

(ct, at+1, st+1, St) satisfying all constraints.

2. Factor prices.

rt = FK(Kt, Lt),

wt = FL(Kt, Lt).

3. Government budget constraint.∫
Z
τ ℓℓtdΦt = Tt +

∫
Z
τptSt(at, ℓt, st)dΦt.

4. Ambient air pollution.

Xt = Ω

(∫
Z
e(ct(at, ℓt, 0))dΦt

)
.

5. Cumulative adoption.

Zt =

∫
Z
stdΦt.

6. Adoption cost.

pt = p0 · Z−ξ
t · exp(−λt).

7. Market clearing.

Kt+1 =

∫
Z
at+1(at, ℓt, st)dΦt,

Lt =

∫
Z
ℓtdΦt,∫

Z

[
ct(zt) + at+1(zt) + q̄e(ct(zt))(1− st) + qe(ct(zt))st − ptSt(zt)

]
dΦt = F (Kt, Lt)+(1−δ)Kt−Kt+1.

8. Aggregate law of motion. The aggregate law of motion Γt is induced by the transi-

tion probabilities and optimal policies at+1(a, ℓ, s), St(a, ℓ, s), and is explicitly stated in

Appendix B.3.

The key innovations of the model are: (i) heterogeneous utility damages from pollution,

(ii) an irreversible binary household adoption decision with subsidized upfront cost, (iii) a

learning-by-doing spillover that lowers that cost as cumulative adoption rises. These features
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allow me to evaluate the welfare and distributional consequences of clean-energy subsidies

along more than a simple transfer margin: subsidies both reallocate resources and accelerate

cost declines for future adopters. The model also embeds heterogeneous pollution damages,

allowing welfare comparisons across the joint income and wealth distribution.

The next section describes the calibration used in the quantitative analysis. Standard

parameters follow the literature; parameters governing adoption costs, spillovers, and pollution

are disciplined using microdata and the reduced-form estimates above.

4 Quantitative Analysis

Having laid out the structure of the model, I now turn to its quantitative implementation.

The goal is to evaluate the distributional and welfare effects of clean energy subsidies by

calibrating the model to match key features of the US economy and residential energy sector.

First, I describe the parameterization of functional forms and the calibration of the model

parameters, distinguishing between those taken from the macroeconomics literature, those

pinned down by empirical moments from household- and installation-level data, and those

estimated in my own empirical analysis (such as the learning-by-doing elasticity). Second, I

outline the computational methods used to solve the model, in the initial and terminal steady

states, and during the transition between them under alternative policy scenarios. I defer the

discussion of the pollution preference block and its calibration to Section 6.2, where I revisit

the baseline results with pollution preferences activated.

4.1 Functional Forms

I make functional assumptions for the household’s utility function, the final goods produc-

tion function, the dirty and clean energy production functions, the pollution function, and

the pollution damage function. I assume that the household’s preferences are represented by

a constant relative risk aversion (CRRA) utility function of the form:

u(c,X) =
c1−σ − 1

1− σ
− νmax{0, X − X̄}

(c/c̄)ω
, (11)

where σ > 0 is the coefficient of relative risk aversion for consumption, ν > 0 scales ambient

pollution to utility units, X̄ is the pollution threshold above which pollution starts to cause

utility losses, ω > 0 makes damages to amplify at lower consumption levels, and c̄ is a

reference consumption level used to normalize the pollution damage term. Even though the

disutility of pollution is separable from the utility of consumption, the pollution damage
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term is nonseparable in consumption and pollution, as pollution damages are larger when

consumption is lower. Importantly, marginal utility of consumption remains positive, ∂u
∂c
> 0,

and diminishing, ∂2u
∂c2

< 0, for all c > 0 and X ≥ 0.

Energy demand is affine in goods consumption:

e(c) = η0 + η1c,

where η0 > 0 captures baseline energy needs (e.g., grid connection) and η1 the marginal

energy intensity of consumption.

The goods production function is of Cobb-Douglas form:

F (K,L) = AKαL1−α,

where α is the output share of capital, and A is total factor productivity.

Ambient air pollution is linear in aggregate dirty energy use:

X = Ω

(∫
Z
e(ct)(1− st)dΦ

)
= γ

(∫
Z
e(ct)(1− st)dΦ

)
,

where γ is the pollution intensity of dirty energy use.

4.2 Calibration

Model parameters are divided into three groups: (i) standard macroeconomic parameters;

(ii) parameters matched to data moments; and, (iii) parameters estimated empirically. Each

model period corresponds to one year. The initial steady state represents the US economy in

2000, before large-scale rooftop solar adoption. Table 4 summarizes all baseline parameters.

4.2.1 Baseline Economy (No Pollution Disutility)

In the baseline quantitative analysis, I shut down the pollution preference block in utility.

Household utility is u(c) = c1−σ−1
1−σ

and ambient pollution X does not affect utility in the

baseline.

Standard Macroeconomic Parameters

I begin by assigning values to the set of standard macroeconomic parameters that are

commonly used in the heterogeneous agent macroeconomics literature. I follow Aiyagari
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Table 4: Calibration summary and data sources

Parameter Description Value Source

Standard macroeconomic parameters

α Output share of capital 0.36 Aiyagari (1994)
β Discount factor 0.96 Aiyagari (1994)
δ Capital depreciation rate 0.08 Aiyagari (1994)
σ CRRA parameter (goods consumption) 1 Aiyagari (1994)
ρ Persistence of labor productivity process 0.9 Aiyagari (1994)
σε Std. dev. of labor productivity shocks 0.04 Aiyagari (1994)
a Borrowing limit −0.5 PSID (2000)
A Total factor productivity 1 normalization

Moment matching parameters

q̄ Unit energy price without solar panels 0.04 RECS (2023)
q/q̄ Unit energy price with solar panels 0.5 RECS (2023)
θ Fraction of households that can adopt 0.001→ 0.15 (linear) RECS (2023)
τ ℓ Uniform labor income tax rate 0.1953 IRS (2000)
τ Subsidy rate for solar adoption cost 0.3 Lane (2025)
πp/y Initial investment cost to income ratio, 2000 0.7 NREL (2023), Census (2024)

Estimated parameters

ξ Learning-by-doing (LBD) elasticity 0.1027 NREL (2023), DSIRE (2025)
λ Exogenous cost decay parameter 0.0213 NREL (2023), DSIRE (2025)
η0 Energy consumption function constant 0.87 BLS (2024), RECS (2023)
η1 Energy consumption function slope 0.74 BLS (2024), RECS (2023)

Pollution block (extension)

X̄ PM2.5 threshold 9 EPA (2024b)
c̄ Median baseline consumption 1.4590 Model moment

ν Pollution utility scale (MWTP match) 0.0471
Vodonos, Awad, and Schwartz (2018),
EPA (2024c), CDC (2023), BLS (2024)

ω Inequality lever 2.838781
Dennin et al. (2024),
BLS (2024), Census (2024), Census (2025)

γ PM2.5 intensity of dirty energy consumption 6.8163 EPA (2024a)

(1994) and set the output share of capital, α, to 0.36, the discount factor, β, to 0.96, and the

capital depreciation rate, δ, to 0.08. The total factor productivity of goods production, A, is

normalized to 1. Idiosyncratic labor endowment process, ℓt, follows a persistent autoregressive

process with a persistence parameter of ρ and a standard deviation of σε:

log(ℓt) = ρ log(ℓt−1) + σε
√

1− ρ2εt,

where εt ∼ N (0, 1). I discretize this earnings process using the Tauchen method. I parameterize

this AR(1) labor productivity process with persistence parameter ρ = 0.9 and innovation

standard deviation σε = 0.04 as in one of the parameter combinations considered by Aiyagari

(1994). Preferences over consumption are represented by a constant relative risk aversion

(CRRA) utility function with a coefficient of relative risk aversion, σ, equal to 1, corresponding

to log-utility.

Agents face a non-state-contingent borrowing constraint a′ ≥ a. The theoretical benchmark
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is the natural borrowing limit (NBL), defined as the present value of the lowest realizable

future labor income stream under the no default (solvency) condition; see, Aiyagari (1994).4

Under my baseline parameterization, this implies aNBL ≈ −5 in consumption units. Using the

NBL as the operative constraint, however, leads to unstable dynamics and excessive borrowing

on a finite grid in this environment (large mass at the constraint and slow convergence along

transitions). Following standard practice in incomplete-markets models, I set a = −0.5,
which corresponds to a debt-to-income ratio of approximately 31% in the initial steady state,

consistent with the average US household debt-to-income ratio of 30% in 2000 University of

Michigan’s (2000) Panel Study of Income Dynamics (PSID).

Moment Matching Parameters

The second set of parameters matches empirical moments from household energy use,

residential solar installation data, and macroeconomic aggregates. Unit energy prices are

pinned down to match the average unit electricity prices reported in the RECS (2023). In

particular, the unit electricity price without on-site solar power generation is normalized to

q̄ = 0.04 (in 2020 US dollars per BTU), while households without on-site solar generation

face an effective price that is 50% lower, q = 0.5q̄, reflecting the reduction in electricity

consumption from the grid due to on-site solar generation as described in Appendix Table

A.2. I calibrate the fraction of households that can adopt the clean technology, θ, to 0.5% in

the first transition period and linearly increase it to to 15% by the terminal steady state,

matching the observed residential solar adoption growth in the RECS (2023).

The flat labor income tax rate τ ℓ is set to 19.53%, which corresponds to the revenue-neutral

flat tax rate that raises the same total tax revenue as the US federal progressive income

tax schedule in 2000, when applied to the model’s steady-state income distribution. The

progressive schedule is taken from the Internal Revenue Service’s (IRS) published 2000 tax

brackets are rates.5 Differences between empirical effective tax rates reflect differences in tax

base definitions and sample coverage between the model and the data. For reference, the

Congressional Budget Office reports an average effective federal labor income tax rate of 12%

in 2000; the gap with the model’s 19.53% reflects differences in the tax base.6 For comparison,

I also specify a progressive labor income tax schedule, denoted τ ℓ(y), that reproduces the US

federal marginal tax brackets in 2000 described in Appendix Table C.1: This progressive tax

4In a stationary environment with net interest rate r and a lower bound on labor income ℓ, the natural
borrowing limit is given by aNBL = −

∑∞
s=1

w ℓ
(1+r)s , so that aNBL is the present value of the minimum feasible

earnings path.
5See https://www.irs.gov/pub/irs-prior/i1040tt--2000.pdf.
6See https://www.cbo.gov/sites/default/files/108th-congress-2003-2004/reports/08-29-2

003AverageTaxRates.pdf.
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specification is used in policy experiments to evaluate the implications of progressivity in the

labor income tax system for adoption incentives and welfare. The subsidy rate for residential

solar panel adoption cost, τ , is set to 30%, reflecting the average federal investment tax credit

(ITC) rate for residential solar installations in the US between 2006 and 2025, as summarized

in the Lane (2025).

The initial installation cost p0 is set so that the model reproduces the largest ratio of median

system price to median household income in the observed sample, which is approximately

70%. I obtain the median gross system price of residential solar panel system installations in

2000 from NREL (2023), and the median annual household income in 2000 from the Census

(2024). The time series of this ratio between 2000 and 2022 is plotted in Figure 2. I set the

initial investment cost of solar panels as:

p0 = πp/y × ȳ0,

where ȳ0 is the median annual household income in the initial steady state of the model. This

calibration anchors the affordability of adoption in observed 2000 conditions.

Estimated Parameters

The final set of baseline model parameters is estimated using reduced-form evidence

developed in section 2.3 and moments from household energy consumption data. The key

parameter of interest is the learning-by-doing elasticity, ξ, which governs how cumulative

adoption reduces subsequent installation costs. The elasticity is estimated using state-level IV

regressions of residential solar installation prices net of subsidies on local cumulative installed

capacity, drawing on data from NREL (2023) and DSIRE (2025) policy database. In addition,

I calculate an exogenous time decay parameter, λ, to capture the declines in average costs

unrelated to local learning spillovers, such as global technology improvements, economies of

scale, and supply chain optimizations. Both ξ and λ are central to quantifying the dynamic

effects of subsidies and adoption spillovers in the model.

My baseline learning elasticity ξ estimate comes from the state-level IV regression results

reported in column 2 of Table 3, which aligns with the model’s national cost curve while

mitigating policy and soft-cost endogeneity concerns. The implied elasticity of 0.1027 implies

a learning rate 1− 2−ξ = 0.0687, meaning that each doubling of cumulative installed capacity

leads to an 6.9% reduction in installation costs. Table 3 also provides results from regression

specifications without additional controls and firm-level estimates as robustness checks.

To discipline the residual cost trend, I estimate λ from the full time series rather than

26



only two endpoints. Specifically, I use the transformed learning-curve equation:

log(pm) + ξ log(Zm−12) = a− λmm+ ϵm,

where m is months since the initial sample period and Zm−12 is the one-year lagged cumulative

installed capacity in month m. The capacity-weighted pre-incentive national monthly price

series pm is constructed using the installation-level data from NREL (2023) as follows:

pgrossm =

∑
i∈It ppw

gross
i,m · wi,m∑

i∈Im wi,m

,

where Im is the set of all residential solar panel installations in month m, ppwgross
i,m is the

gross price per watt of installation i in month m before incentives, and wi,m is the size of

installation i in watts. The prices are adjusted for inflation using the price deflator.

Together with the estimated elasticitiy ξ, I run an OLS regression of the left-hand side on

a constant and a linear time trend to estimate λ. Specifically, I back out λm rearranging the

estimated learning-curve equation to obtain:

λm =
log
(

pma

pmb

)
− ξ log

(
Zmb−12

Zma−12

)
mb −ma

,

where ma and mb are the first and last months in the sample period, respectively and pma

and pmb
are the corresponding capacity-weighted average national gross prices of residential

solar panel systems in those months. I convert the estimated monthly λm to an annual λ

by multiplying by 12 and obtain λ = 0.0213, indicating an average annual cost increase of

2.5% unexplained by local learning-by-doing spillover effects. Figure 3 plots the fitted cost

curve implied by the estimated learning-by-doing elasticity ξ = 0.1027 and exogenous time

decay parameter λ = 0.0213 against the actual average gross prices of residential solar panel

systems between 2000 and 2022.

The per household adoption cost follows a multiplicative index that combines learning-by-

doing and an exogenous time trend. Let Zpre > 0 denote the pre-adoption experience shifter.

I force the cumulative adoption stock Zt ≥ 0 to be weakly increasing over time, with Z0 = 0

in the initial steady state. Adoption cost is left-continuous in the experience stock to avoid

simultaneity with current installations.

Define the effective experience stock

efft ≡ Zpre + Zt−1, eff0 ≡ Zpre + Z0,
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Figure 3: Fitted cost curve from estimated learning-by-doing parameters

and the (unit-free) cost index

idxt =

(
efft

eff0

)−ξ

exp
(
− λ t̃

)
, t̃ ≡ min{t, 99}. (12)

The cap t̃ = min{t, 99} halts the pure time trend after 100 periods to prevent implausibly

low long-run costs. Numerically, I bound idxt away from zero by idxt ← max{idxt, 10−12} to
maintain positivity.

Given a baseline level p0 , the adoption cost path is

pt = p0 × idxt, (13)

so that pt falls with accumulated experience (learning) and with the exogenous trend. Let

δtarget denote the average annual decline in adoption costs over 2000-2020, measured from the

data, and let ∆Z be the average per period increment of the normalized cumulative adoption

stock over the same window. For fixed (ξ, λ), I pin down Zpre so that the model’s average

log change matches δtarget. Under a small-step approximation with mean growth in effective

experience, this yields

Zpre =
∆Z

exp
(
(δtarget − λ)/ξ

)
− 1

, (14)

and I set Zpre = max{Zpre, 10−6} in implementation. In the baseline calibration I use

(ξ, λ) = (0.1027, 0.0213) and the data moments (δtarget,∆Z) = (0.0242, 0.032) from 2000-2020

to compute Zpre, which is then held fixed throughout the transition computations.

Finally, I parameterize the affine energy consumption function as follows:

e(c) = η0 + η1c,
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where e(c) is a household’s annual energy expenditure, c is the annual consumption expendi-

ture, and η0 and η1 are parameters to be calibrated. I estimate, η0 and η1, to fit the average

energy expenditure shares by net worth quintiles from the 2000 PSID to be replicated in the

model’s initial steady state.

Let z ∈ Z denote the household state (e.g., assets and idiosyncratic labor productiv-

ity), and let Φ be the associated invariant probability measure on (Z,B(Z)). Let c(z) be
goods consumption and let e(c(z); η) denote energy services as a function of consumption,

parameterized by η = (η0, η1). The energy price q̄ is taken as exogenous and constant in the

baseline.

To map model implications to income quintiles, define an income mapping ι : Z → R+

and quantile cutoffs {κj}5j=0 such that

Φ
(
{z : ι(z) ≤ κj}

)
=
j

5
, j = 0, 1, . . . , 5,

with κ0 = −∞ and κ5 =∞. The quintile sets are then

Qj := { z ∈ Z : κj−1 < ι(z) ≤ κj }, j = 1, . . . , 5.

For each quintile j, the model-implied energy expenditure share is

ϵQj
(η) =

∫
Qj

q̄ e
(
c(z); η

)
dΦ(z)∫

Qj

[
q̄ e
(
c(z); η

)
+ c(z)

]
dΦ(z)

. (15)

Let ϵ̂Qj
denote the empirical targets from the 2000 PSID. The calibration chooses η to

minimize the weighted sum of squared deviations:

η⋆ ∈ arg min
η∈R2

5∑
j=1

ωj

(
ϵQj

(η)− ϵ̂Qj

)2
, (16)

where ωj = 1 by default (equal weighting); when available, I set ωj = 1/σ̂2
Qj

using the

sampling variances from PSID (inverse-variance weighting).

On a finite grid {zm}Mm=1 with probabilities {Φm}Mm=1 (so that
∑

m Φm = 1), (15) becomes

ϵQj
(η) =

∑M
m=1 1{zm ∈ Qj}Φm q̄ e(c(zm); η)∑M

m=1 1{zm ∈ Qj}Φm

[
q̄ e(c(zm); η) + c(zm)

] .
All objects are evaluated at the stationary distribution Φ used for calibration; along transitions

29



one would replace Φ with the relevant Φt. The values of η that minimize (16) are η0 = 0.87

and η1 = 0.74.

4.2.2 Calibration for Pollution Damages

For transparency, I outline here how the pollution-damage parameters will be identified

and report the external data sources. These parameters are not used in the baseline calibration

or baseline policy experiments; they are activated only in Section 6.2.

Pollution Metric and Mapping

I measure X as population-weighted annual PM2.5 (µg/m3), and map dirty energy to

ambient pollution by

Xt ≡ γ ·
[∫

Z
e(ct(at, ℓt, st))(1− st) dΦt

]
.

I set γ to match the observed baseline PM2.5 in year 2000 using the baseline model’s implied

dirty-energy integral with pollution preferences shut down. The baseline PM2.5, denoted by

X0, is obtained from the EPA (2024a) and is 13.52 µg/m3 in 2000. I calibrate γ as:

γ =
X0∫

Z̃ e(c0(a0, ℓ0)) dΦ0

,

where c0 is the initial steady state consumption policy function, Φ0 is the associated invariant

distribution, and Z̃ is the state space at the initial steady state, stated in Appendix B.1. The

aggregate energy consumption at the initial steady state is 1.9835 in model consumption

units, so γ = 13.52/1.9835 = 6.8163.

Damage Function in Utility

When activated, utility is

u(c,X) =
c1−σ − 1

1− σ
− ν

max{0, X − X̄}
(c/c̄)ω

,

where X̄ is set to the health-based annual PM2.5 standard, equal to 9 µg/m3, based on

the EPA’s (2024) National Ambient Air Quality Standards (NAAQS), and c̄ is the median

consumption in the baseline steady state.

Utility Scale of Pollution Concentration

I set the parameter ν to equalize the model generated marginal rate of substitution

between consumption and pollution at the initial steady state to match an external estimate
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of marginal willingness to pay (MWTP) for a small reduction in PM2.5 at the baseline

pollution level. When X > X̄, consumption dollars a representative household would give up

for a unit drop in pollution, or the MRS between consumption and pollution, MRSX,c, is:

MRSX,c =
∂u(c,X)/∂X

∂u(c,X)/∂c
,

= ν
(c/c̄)ω

c−σ
,

= νc̄−ωcσ+ω.

Finally, I set ν to equalize the model-impliedMRSX,c at the median household’s consumption

level, to the MWTP estimate:

νc̄−ω
(
cmed
0

)σ+ω
=MWTPX,c,

where cmed
0 is the median consumption in the initial steady state, and MWTPX,c is the

external MWTP estimate of a 1 µg/m3 reduction in PM2.5 at the baseline pollution level.

Since baseline c̄ equals cmed
0 , this simplifies to:

ν =
MWTPX,c(
cmed
0

)σ .

I calculate the MWTP per 1 µg/m3 reduction in PM2.5 at the baseline pollution level using:

(i) a long-term all cause mortality PM2.5 concentration-response (C-R) of 7% per 10 µg/m3

from Vodonos, Awad, and Schwartz (2018), (ii) a value of statistical life (VSL) equal to 10

million (2000 dollars) from the EPA (2024c), and (iii) the 2000 mortality rate of 845.2 deaths

per 100, 000 people from the CDC (2023). To calculate MWTP, I use the following formula:

MWTPX,c = VSL× Baseline mortality rate× C-R per 1 µg/m3,

which yields a MWTP of approximately $591 (in 2000 dollars). Finally, I scale the MWTP

value with the ratio between the annual consumption expenditures in 2000 dollars of the

median income households from the BLS’s (2024) CES, which is $18,323, and the median

income household’s consumption expenditure at the initial model steady state, which is 1.4590,

to obtain a MWTP value in model consumption units. The ratio of median income household’s

expenditure in the data to expenditure in the model is approximately 18,323
1.4590

≈ 12,599, so the

final MWTP value in model consumption units is approximately MWTPX,c = 0.0471. The

implied ν is then ν = 0.0471/(1.4590)1 = 0.0323.
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Inequality Lever

The inequality level ω amplifies pollution disutility when a household’s consumption is

lower than the reference consumption level c̄, and reduces it when consumption is higher.

I set ω to match the ratio of pollution damages as a share of consumption for the bottom

versus top income distribution terciles. I partition the population into three groups based

on income terciles at the initial steady state without pollution damages, and compute the

model-implied pollution damage mass for each group:

Dg(ω) =

∫
Tg

ν
max{0, X0 − X̄}

[c0(a, ℓ)/c̄]ω
dΦ0, g = 1, 2, 3,

where Tg is the income tercile set g at the initial steady state, and c0 and Φ0 are the

associated consumption function and invariant distribution, respectively. Similarly, I define

the model-implied consumption mass for each group:

Cg =

∫
Tg

c0(a, ℓ)dΦ0, g = 1, 2, 3.

Prior to calculating the pollution burden as a ratio of damages to consumption, I calculate

damage and consumption shares by group as:

ψD
g (ω) =

Dg(ω)∑3
g=1Dg(ω)

, ψC
g =

Cg∑3
g=1Cg

, g = 1, 2, 3.

I then compute the pollution burden ratio for the bottom versus top income terciles as:

Υ(ω) =
ψD
1 (ω)/ψ

C
1

ψD
3 (ω)/ψ

C
3

.

I use pollution and consumption shares in pollution burden calculation to abstract away from

units and maintain comparability with alternative calibrations.

I set ω to match the pollution burden ratio that I calculate using estimates of US county-

level mortality damages from PM2.5 pollution and consumption expenditure data across

income terciles. To obtain the weighted average of mortality damages by income terciles, I

combine county-level mortality damage estimates from Dennin et al. (2024) with county-

level median income from Census (2024) and population data from Census (2025). I obtain

weighted average of consumption expenditure by income terciles from the BLS’s (2024) CES.

32



I compute the empirical pollution burden ratio as follows:

Υ̂ =
ψ̂D
1 /ψ̂

C
1

ψ̂D
3 /ψ̂

C
3

,

where ψ̂D
g is the share of total mortality damages borne by income tercile g from Dennin

et al. (2024), and ψ̂C
g is the share of total consumption expenditure by income tercile g from

the 2014 CES. The empirical pollution burden ratio is approximately Υ̂ = 5.83, indicating

that the bottom income tercile bears significantly a larger pollution burden than the top

income tercile. I then choose ω to solve the minimization problem:

ω⋆ = argmin
ω≥0

(
Υ(ω)− Υ̂

)2
.

The implied ω is ω = 2.84.

Having established the calibration of baseline and extended model parameters, the next

step is to describe how the model is solved and simulated. The computational procedure

involves characterizing the household decision problem under the calibrated environment,

solving for the stationary equilibrium of the initial and terminal economies, and then tracing

out the transition dynamics in response to policy interventions. In what follows, I outline

the numerical methods used to solve the model, describe the construction of both the initial

and long-run steady states, and detail how transitional paths are computed under baseline

subsidy scenario.

4.3 Computation

The model is solved numerically in three stages: (i) the initial steady state without the

clean technology, (ii) the terminal steady state with only the clean technology available,

and (iii) the transition path connecting the two. Each stage ensures consistency between

individual decisions, aggregate quantities, and market clearing conditions.

In the initial steady state, households do not have access to the clean technology, and the

economy settles into a stationary equilibrium given exogenous energy prices and fiscal policies.

In the terminal steady state, all households are equipped with the clean energy technology,

and the economy again reaches a stationary equilibrium under the new energy price regime.

The transition path is computed under perfect foresight. Given an initial guess for the

sequences of aggregates, the model is solved by backward induction on household value

functions and forward iteration on the distribution of households. Paths of aggregate capital

stock, lump-sum transfers, and the cumulative stock of adopters are updated iteratively until
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factor and goods markets clear at each point along the path. The equilibrium path thus

describes the joint evolution of prices, adoption, and welfare as the economy transitions to

the new steady state. Further computational details—including the recursive formulation,

iteration schemes, and convergence criteria—are provided in Appendix C.2. I report the key

steady-state moments and transition dynamics in Section 5.

The computation of the extended model with pollution preferences follows the same steps

as above, with the addition of the pollution preference block in utility and the pollution

mapping. As mentioned in section 3, incorporating pollution preferences does not alter

computation significantly, as pollution is a deterministic function of aggregate dirty energy

consumption. Thus, the number of state variables remains unchanged, and the household

problem retains its recursive structure. The main difference is that the household value

functions and policy functions now depend on the pollution level, which in turn depends on

the aggregate dirty energy consumption. This adds an additional layer of general equilibrium

feedback, as households’ adoption decisions affect pollution, which affects utility, which in

turn affects adoption incentives. The computational algorithm is adjusted to account for this

feedback loop, ensuring that the pollution level is consistent with the aggregate dirty energy

consumption at each point in time. To implement this extension, I add pollution level as

a fourth variable to guess and update along the transition path, in addition to aggregate

capital stock, lump-sum transfers, and cumulative adopters. In Section 6.2, I report the

results of the extended model, re-solve the steady states and transition paths, and revisit

policy experiments.

Since the objective of this quantitative analysis is to understand the distributional and

welfare implications of the residential solar transition, I compute a range of household-

level welfare measures along the transition path. These include the consumption equivalent

variation (EV), which measures the percentage change in initial consumption that would

make a household indifferent between the baseline and counterfactual scenarios, consumption

compensating variation (CV), which measures the percentage change in final consumption

that would make a household indifferent between the baseline and counterfactual scenarios,

and the lifetime utility change, which measures the absolute change in lifetime utility from

the baseline to counterfactual scenarios.

Let cbaset and ccft denote the consumption paths under the baseline and counterfactual

scenarios, respectively, for t = 1, . . . , T . Formally, EV and CV, denoted by λEV and λCV , and
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lifetime utility change, denoted by ∆V , are defined as follows:

EV: Et

[
T∑
t=1

βtU
(
(1 + λEV ) cbaset

)]
= Et

[
T∑
t=1

βtU
(
ccft
)]
,

CV: Et

[
T∑
t=1

βtU
(
cbaset

)]
= Et

[
T∑
t=1

βtU
(
(1 + λCV ) ccft

)]
,

∆V: ∆V ≡ Et

[
T∑
t=1

βtU
(
ccft
)]
− Et

[
T∑
t=1

βtU
(
cbaset

)]
.

These welfare measures are computed for each household along the transition path, allowing

for a detailed analysis of how different households are affected by the transition and the

associated policies. In my analysis, I only report EV as the main welfare metric, as it provides

a clear interpretation in terms of consumption changes. The computation of the EV metric is

described in detail in Appendix C.3.

In sum, the calibration aligns the model with observed macro aggregates, household energy

data, and empirically estimated cost dynamics. The computational procedure then traces

out equilibrium transitions consistent with individual optimization and general equilibrium

feedbacks. This foundation enables the next section’s analysis of how subsidy design and

financing shape adoption, inequality, and welfare in the clean energy transition.

5 Quantitative Results

This section presents the quantitative results of the model. I begin by evaluating how

well the initial stationary equilibrium reproduces salient features of the joint income-wealth

distribution observed in the data, validating the model as a credible tool for policy analysis. I

then introduce a uniform adoption subsidy for clean energy technologies and trace its effects

on adoption incentives, prices, and welfare across heterogeneous households. These baseline

results provide a benchmark for understanding the equity and efficiency consequences of

adoption subsidies before introducing pollution externalities.

5.1 Model Fit

Before turning to the welfare effects of subsidies, I assess the model’s fit to the US wealth

distribution in 2000 using PSID data. Table 5 compares the model’s stationary equilibrium

to the data across net-worth quintiles for income, expenditure, and wealth shares, as well as

the ratio of energy expenditure to total expenditure.
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Table 5: Selected variables across the net worth quintiles from the data vs the initial model
stationary equilibrium

NW Quintile
% Share of % Ratio

Income Expenditure Wealth Energy-Expend

Data Model Data Model Data Model Data Model

Q1 10.9 13.3 12.6 13.8 -0.9 0.3 5.9 6.2
Q2 12.2 18.2 15.4 18.4 1.2 6.8 6.0 5.6
Q3 17.8 17.4 19.2 17.4 5.2 12.6 5.8 5.1
Q4 23.1 22.6 23.2 22.4 14.8 25.6 5.1 4.8
Q5 35.9 28.5 29.6 28.1 79.6 54.7 4.5 4.4

Notes: Data is from the 2000 PSID.

The model reproduces the joint distribution of income, expenditure, and wealth reasonably

well. It slightly overpredicts the income and expenditure shares of the lower quintiles and

underpredicts those of the top quintile, but the discrepancies are modest. As in many

heterogeneous agent models, the wealth concentration of the top quintile is somewhat

underrepresented; this could be improved with heterogeneity in discount factors or returns.

The model matches energy expenditure shares across the net-worth distribution closely,

indicating that it captures observed consumption patterns well.

5.2 Baseline Results

To evaluate the welfare implications of the clean-energy transition, I compute welfare

changes for each household along the transition path. All results in this section abstract

from pollution disutility to isolate the macroeconomic and adoption channels. Appendix C.3

provides definitions of the welfare metrics used.

Aggregate Dynamics

Figure 4 plots aggregate dynamics under a uniform labor income tax with learning-by-doing

(LBD) in adoption costs, comparing scenarios with (blue) and without (orange) adoption

subsidies. The panels show: (a) cumulative adopters, (b) the technology-cost-to-median-income

ratio, (c) the capital-labor ratio, and (d) lump-sum transfers.

The capital-labor ratio at the terminal steady state is 12% lower than in the initial steady

state capital-labor ratio, driven by reduced energy use due to efficiency gains. This implies a

4% fall in the real wage and a 24% rise in the real interest rate. The 50% decline in energy

prices increases consumption by 4.9% for the poorest and 1.6% for the richest households.

Although aggregate capital and output fall, aggregate consumption rises because energy

becomes much cheaper.
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The transition dynamics are non-monotonic and differ sharply with subsidies. Without

subsidies, the capital-labor ratio initially rises as households save to finance adoption. This

raises wages and lowers interest rates, benefiting labor-reliant households and hurting savers.

As adoption spreads and energy costs fall, the capital-labor ratio eventually declines, reversing

those short-run price effects.

The aggregate path of adoption has an S-shape, consistent with diffusion of innovations

theory discussed by Rogers (2003). Adoption starts slowly, as only high-income, high-wealth

households can afford the upfront costs. As adoption costs fall through learning-by-doing,

more households find it optimal to adopt, accelerating the process. Eventually, adoption

saturates as most households that can benefit have already adopted, and the stock of new

adopters tapers off.

Subsidies alter this pattern by lowering adoption costs and reducing the need to save

beforehand. Early adoption and higher savings among adopters raise the capital-labor ratio

more strongly and for longer, about 15 years. Higher wages from this expansion benefit all

households, while the lower interest rate hurts the asset-rich but helps borrowers. Although

higher wages increase tax revenues, financing the subsidies reduces net transfers substantially,

hurting especially the poor, who depend more on transfers. Overall, the transition exhibits

rich, non-monotonic dynamics in wages, interest rates, and transfers, all of which shape

heterogeneous welfare outcomes.

Aggregate Welfare Effects

First, I evaluate the welfare effects of the technology transition in the absence of any

policy change. This counterfactual compares an economy that remains permanently in its

initial steady state to one that undergoes the clean-technology diffusion driven solely by LBD

and exogenous cost decline, without subsidies. Figure 5 shows the equivalent-variation (EV)

welfare impacts of this technology transition across the joint income-wealth distribution. The

welfare effects of the technology transition are monotonically increasing in wealth: wealthier

households gain more, while the less wealthy households gain less, and even some experience

small welfare losses. The distributional pattern arises because without subsidies, aggregate

savings decline sharply during the medium term of the transition and recover only slowly.

This depresses wages and raises interest rates, which hurts labor-reliant poor households and

benefits capital-reliant rich households. Moreover, the fall in wages also reduces government

tax revenues, leading to lower transfers that disproportionately affect the poor.

Figure 6 shows the EV welfare impacts of subsidizing clean energy technology adoption

across the joint income-wealth distribution. On average, most groups gain, but welfare gains

rise with income and wealth: only the poorest households experience losses. Middle-income
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Figure 4: Aggregate dynamics under baseline policy with LBD, with and without adoption
subsidies.

(a) Cumulative stock of adopters (b) Technology cost

(c) Capital-labor ratio (d) Lump-sum transfers

groups see the largest average gains.

While Figures 5–6 illustrate the distributional patterns of welfare changes, it is also useful

to compare their aggregate magnitudes. In the absence of any policy, the clean-technology

transition alone raises aggregate consumption-equivalent welfare by 0.3 percent relative to

an economy that remains in the initial steady state. Introducing the adoption subsidy on

top of this transition yields an additional 0.05 percent gain. Thus, the subsidy accounts

for roughly one-sixth of the total welfare improvement associated with the clean-energy

transition. Although smaller in aggregate magnitude, the policy plays a pivotal role in

broadening participation in the transition: it mitigates welfare losses among lower-wealth

households and shifts part of the gains from high-wealth to middle-income groups.

Table 6 presents a detailed decomposition of the welfare changes induced by adoption
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Figure 5: Welfare impact of transitioning to clean energy technology across the income-wealth
distribution, measured by equivalent variation (EV) as a percentage of initial consumption.

Figure 6: Welfare impact of subsidizing solar panel adoption cost across the income-wealth
distribution, measured by equivalent variation (EV) as a percentage of initial consumption.

subsidies, breaking down the contributions from direct subsidies, LBD-induced cost reductions,

price effects, and fiscal transfer effects. Before I discuss the welfare decomposition, I first
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highlight the total welfare effects and their distributional patterns across the wealth terciles.

Panel A of Table 6 summarizes the EV metric for each welfare changing component of

the subsidy. I provide the definitions of these welfare metrics in Appendix C.3. The last row

of Panel A of Table 6 summarizes the aggregate welfare change across all households. On

average, I find that the subsidy leads to a small welfare gain across all households, with an

average EV of 0.05%.

I define a household as strictly benefiting, i.e., a winner from the subsidy, if its EV is

strictly positive. The final column of Panel A of Table 6 reports the share of all households

that benefit from each welfare change induced by the subsidy. Overall, I find that a strong

majority of 93.9% of households experience net welfare gains from subsidizing the transition,

while the remaining 6.1% experience losses or are indifferent relative to the baseline. However,

the distribution of winners is unequal.

Panel B of Table 6 breaks down the share of winners by asset terciles. The bottom row

of Panel B shows the within asset tercile winner shares. The results reveal unequal support.

Although the majority of each wealth tercile wins from the subsidies, the strict support

decreases with wealth. The within-tercile shares of strict winners are 84.8%, 98.1%, and

99.9%, for bottom, middle, and top wealth terciles respectively. This pattern indicates that

although the subsidies enhance aggregate welfare, low-wealth households are not unanimously

benefiting and may be disproportionately burdened by the costs of financing the subsidy,

while high-wealth households are strictly better off.

Welfare Decomposition

To understand the distributional mechanisms underlying these aggregate welfare effects,

I decompose the total welfare change into four components: (i) the direct subsidy effect,

which captures the immediate benefit to adopters from the subsidy; (ii) the LBD-induced

cost change effect, which reflects how the subsidy accelerates adoption and thereby reduces

future technology costs for all households; (iii) the price effect, which accounts for changes in

equilibrium prices (wages, interest rates, energy prices) induced by the subsidy; and (iv) the

transfer effect, which captures changes in fiscal transfers due to altered government budget

constraints. The first two components represent the direct benefits of the subsidy, while the

latter two capture general equilibrium feedback effects. Table 6 presents the decomposition by

these four components for the aggregate economy in Panel A and by asset terciles in Panel B.

The direct subsidy and LBD cost effects are positive for essentially all households. The

subsidy lowers the upfront cost of adoption directly, while accelerated adoption generates

spillovers that reduce future costs. On average, these two channels raise welfare by EV gains

of 0.24% and 0.004%, respectively. The latter is small in magnitude, consistent with the fact
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Table 6: Decomposition of welfare effects and distribution of winners by asset tercile

Panel A. Aggregate Welfare Decomposition

Component Avg. EV (%) Winner (%)

Direct subsidy +0.24 100.0
LBD-induced cost change +0.00 99.5
Price effect −0.02 39.3
Transfer effect −0.17 0.0

Total +0.05 93.9

Panel B. Winner Shares by Asset Tercile (%)

Bottom Middle Top Aggregate

Direct subsidy 100.0 100.0 100.0 100.0
LBD-induced cost change 100.0 100.0 98.3 99.5
Price effect 92.9 18.2 0.0 39.3
Transfer effect 0.0 0.0 0.0 0.0

Total 84.8 98.1 99.9 93.9

Notes: Winner share is the fraction of households with strictly positive
consumption-equivalent variation (EV). Tercile population shares are [0.360,
0.323, 0.317].

that LBD affects future adopters more than current ones. Panel B shows that these gains are

broadly shared across the asset distribution: all terciles weakly benefit from both the direct

subsidy effect and the LBD cost effect.7

The price effect introduces heterogeneity. On average, it reduces welfare by an EV change

of −0.02% and strictly benefits only 39.3% of households. Panel B shows that this channel is

sharply distributional: the winner share is 92.9% in the bottom asset tercile, 18.2% in the

middle tercile, and 0.0% in the top tercile.

This pattern reflects how factor prices move during the transition. As shown in Figure 4,

subsidies accelerate adoption and raise the capital-labor ratio more sharply than in the

no-subsidy counterfactual. In the short run this pushes up wages and lowers the interest rate.

Low-asset households rely primarily on labor income and therefore benefit from higher wages.

High-asset households rely more on capital income and are hurt by lower returns. Thus, the

price effect is progressive in incidence: it favors the asset-poor and penalizes the asset-rich.

The transfer effect is negative for everyone. Because the subsidy is financed out of the

same tax base, it reduces lump-sum transfers even though rising wages increase tax revenue.

On average, this channel lowers welfare by an EV change of −0.17%, and no households

gain from it (winner share 0%). The distributional bite of this channel is most severe for the

7For instance, the top asset tercile has a 98.3% winner share from the LBD channel. Winner share is
defined as the fraction of households with strictly positive welfare gains; the remaining 1.7 are indifferent, not
worse off.
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asset-poor, who rely more on transfers for consumption. This is visible in Panel B: despite

benefiting from the price effect, low-asset households still face weaker overall support once

reduced transfers are taken into account.

Aggregating all four channels, the total welfare effect of the subsidy is positive on average.

The direct subsidy effect is the dominant contributor to this average gain and offsets the

strong negative effect coming from reduced transfers. Learning spillovers (the LBD cost effect)

are present but quantitatively modest at baseline. At the same time, the fiscal incidence of

the policy is not neutral: low-wealth households bear a relatively larger share of the financing

burden through reduced transfers, while high-wealth households are more exposed to the fall

in interest rates.

In summary, the subsidy delivers broad gains through lower adoption costs and, to a

lesser extent, through learning spillovers. But those gains are partially offset by two general

equilibrium forces: a transfer channel that hurts everyone (especially the asset-poor who

depend on transfers) and a price channel that hurts the asset-rich (through lower capital

returns). The net result is that the subsidy enjoys majority support, but the burden of

financing it is regressive in the sense that low-wealth households pay more, relative to their

resources, via foregone transfers.

Importantly, these results come from a simplified baseline environment: subsidies are

refundable, labor income taxation is flat, and pollution externalities are turned off. In the

next section, I relax these assumptions—introducing progressive taxation, nonrefundability,

and pollution damages—and examine how each changes both aggregate welfare and the

distribution of winners and losers.

6 Sensitivity Analysis

The baseline results evaluated the welfare effects of subsidizing clean energy adoption

under a simplified policy: a uniform labor income tax financing a permanent, refundable

adoption subsidy. Real-world policies are more complex. The US tax system is progressive:

the federal residential solar investment tax credit has historically been nonrefundable and

temporary and environmental policy is motivated in part by pollution damages, which the

baseline abstracted from.

This section extends the analysis along two dimensions. First, Section 6.1 studies alternative

financing and subsidy designs that mirror US policy practice. Second, Section 6.2 incorporates

pollution damages into utility, allowing me to quantify gains from improved air quality and

to revisit the distributional incidence of subsidies.
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6.1 Alternative Financing and Subsidy Designs

To move beyond the benchmark subsidy, I evaluate how alternative policy designs affect

both the efficiency and equity of the energy transition. These policies are motivated by

real-world policy designs debated or implemented in the US. I consider three alternative

policies, each building on the previous one, to isolate the effects of specific design features: (i)

a progressive labor income tax financing mechanism, (ii) a nonrefundable adoption subsidy

under progressive financing, (iii) an income-capped nonrefundable subsidy. These policies

differ along two dimensions: how the policy is financed and who is eligible for the subsidy. I will

decompose welfare effects and winner shares for each policy as in section 5 and evaluate which

designs best balance efficiency and equity. Importantly, these three experiments (progressive,

nonrefundable, and income-capped) are all solved in the same progressive-tax environment,

so their initial and terminal steady states are comparable to one another, but not to the

benchmark with a uniform tax. In this progressive financing environment, the policy-free

energy transition (no subsidy) also raises aggregate welfare by about 0.3%, so the marginal

subsidy effects reported below can be read against a transition of a similar order of magnitude

as in the benchmark.

Experiment 1: Progressive Labor Income Tax Financing

I first repeat the baseline subsidy experiment, but replace the uniform labor income

tax with a progressive labor income tax schedule. Table 7 presents the detailed welfare

decomposition for this experiment, analogous to Table 6 for the benchmark. Note that both

the initial and terminal steady states differ under progressive taxation, even before introducing

subsidies: effective tax rates shift savings, adoption timing, and thus the baseline against

which subsidies are evaluated.

Under progressive financing, subsidizing adoption still raises aggregate welfare, with an

average EV gain of 0.05%, the same as under uniform financing. However, two changes emerge.

First, the aggregate winner share falls from 93.9% under uniform financing to 83.3%. Second,

the decline in support is concentrated among low-wealth households: within-tercile winner

shares fall most in the bottom tercile.

To understand this, I compare adoption dynamics in Figure 7. Panels (a)–(b) show that

aggregate adoption without subsidies is slower under progressive financing. Higher-income

(and typically higher-wealth) households face higher effective tax rates, have less liquidity,

and adopt more slowly. Lower-income households face lower effective tax rates, but they are

not the early adopters in any case. As a result, early aggregate adoption is delayed.

When subsidies are introduced, adoption accelerates under both financing schemes, and the

aggregate adoption paths converge. But the composition differs. Under progressive financing,
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Table 7: Decomposition of experiment 1 welfare changes and distribution of winners by asset
tercile

Panel A. Aggregate Welfare Decomposition

Component Avg. EV (%) Winner (%)

Direct subsidy +0.23 100.0
LBD-induced cost change +0.00 99.8
Price effect −0.02 32.3
Transfer effect −0.17 0.0

Total +0.05 83.3

Panel B. Winner Shares by Asset Tercile (%)

Bottom Middle Top Aggregate

Direct subsidy 100.0 100.0 100.0 100.0
LBD-induced cost change 100.0 100.0 99.2 99.8
Price effect 87.9 8.4 0.0 32.3
Transfer effect 0.0 0.0 0.0 0.0

Total 55.8 94.4 100.0 83.3

Notes: Winner share is the fraction of households with positive consumption-
equivalent variation (EV). Tercile population shares are [0.335, 0.343, 0.322].

subsidies disproportionately speed up adoption among middle- and high-wealth households,

who were previously slowed by higher tax burdens. Figure 7, panels (c)–(d), shows that

adoption across wealth terciles becomes more similar once subsidies are present.

These adoption patterns map into different general equilibrium effects. Figure 8 compares

aggregate savings (through the capital-labor ratio) and transfers with and without subsidies

under progressive financing.

Relative to uniform financing (Figure 4), progressive financing produces a smaller short-run

increase in the capital-labor ratio once subsidies are introduced (panel (a)). The intuition is

that under progressive taxation, early adopters face higher marginal tax rates; after adopting,

they save less than they would under uniform financing. The muted rise in the capital-labor

ratio means wages rise by less in the short run. Since low-wealth households rely more on

labor income, they benefit less. This weaker wage response is the first reason support falls

among the bottom tercile.

At the same time, net lump-sum transfers fall more under progressive financing (panel

(b)). Even though wages rise somewhat and generate tax revenue, financing the subsidy

consumes a larger share of that revenue, so the net-of-subsidy transfer drops more than under

uniform financing. Because low-wealth households depend more on lump-sum transfers, they

are hit harder by this reduction.

Comparing Tables 6 and 7, and Figures 4 and 8, the mechanism is clear: progressive
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Figure 7: Aggregate and across asset tercile adopter stock, benchmark and experiment 1.

(a) Aggregate adoption, benchmark (b) Aggregate adoption, experiment 1

(c) Asset-tercile adoption, benchmark (d) Asset-tercile adoption, experiment 1

financing weakens the wage boost and deepens the transfer cut. Both disproportionately

harm low-wealth households, reducing their winner share. The LBD-induced cost channel

remains small in either case.

Experiment 2: Nonrefundable Subsidy under Progressive Financing

I next consider a nonrefundable subsidy under progressive financing, mirroring the his-

torical US federal solar ITC. Under a nonrefundable design, households can only claim the

subsidy against tax liability: low-income households with little or no tax liability receive no

benefit. This design aims to limit fiscal cost (and thus transfer reductions) but may exclude

exactly the liquidity-constrained households that policy is often meant to help.

Table 8 shows that aggregate welfare still improves: the average EV gain remains 0.05%,

similar to experiment 1. Direct subsidy effects and LBD-induced cost effects remain positive
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Figure 8: Aggregate dynamics under progressive financing policy with LBD, with and
without adoption subsidies, experiment 1.

(a) Capital-labor ratio (b) Lump-sum transfers

for essentially all households, although the magnitude of the direct subsidy channel falls

slightly because some low-income households are no longer eligible. The LBD effect remains

small.

The average price effect is still negative, but weaker than in experiment 1, and the share

of households who benefit from the price channel falls from 32.3% to 23%. The transfer effect

becomes slightly less negative on average: making the subsidy nonrefundable does reduce the

fiscal pressure somewhat. But transfer effects are still strictly nonpositive for all households.

The distributional pattern shifts. The aggregate winner share falls further, from 83.3% in

experiment 1 to 78.1%. Almost all of this decline comes from the bottom asset tercile: their

within-tercile winner share drops from 55.8% to 44.4%. In other words, limiting refundability

mainly withdraws support from the poor.

Figure 9 compares adoption under refundable (experiment 1) and nonrefundable (experi-

ment 2) subsidies. Panels (a)–(b) show that aggregate adoption paths are nearly identical, so

refundability does not change overall diffusion much. Panels (c)–(d) show why distributional

incidence changes: with a nonrefundable subsidy, early adoption slows among high-wealth

households and accelerates slightly among low- and middle-wealth households. Eligibility

becomes state-contingent: high-wealth households delay if they are temporarily in a low-

income state (and therefore can’t claim the full credit), while some liquidity-constrained

households adopt earlier if they happen to draw a temporarily high-income state and thus

qualify. Because income follows a persistent AR(1) process, these timing frictions matter in

the short- to medium-run.

These shifts in adoption timing feed into savings, prices, and transfers (Figure 10). With a
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Table 8: Decomposition of experiment 2 welfare changes and distribution of winners by asset
tercile

Panel A. Aggregate Welfare Decomposition

Component Avg. EV (%) Winner (%)

Direct subsidy +0.21 100.0
LBD-induced cost change +0.00 100.0
Price effect −0.00 23.0
Transfer effect −0.16 0.0

Total +0.05 78.1

Panel B. Winner Shares by Asset Tercile (%)

Bottom Middle Top Aggregate

Direct subsidy 100.0 100.0 100.0 100.0
LBD-induced cost change 100.0 100.0 100.0 100.0
Price effect 64.8 3.7 0.0 23.0
Transfer effect 0.0 0.0 0.0 0.0

Total 44.4 90.6 99.8 78.1

Notes: Winner share is the fraction of households with strictly positive
consumption-equivalent variation (EV). Tercile population shares are [0.335,
0.343, 0.322].

nonrefundable subsidy, aggregate savings barely rise in the short run relative to the no-subsidy

case (panel (a)). That weaker savings response implies a smaller short-run increase in the

capital-labor ratio and hence a smaller wage boost. Lower wage gains reduce the labor-income

benefit to low-wealth households, which helps explain their weaker support.

In the medium run, the capital-labor ratio falls more under the nonrefundable subsidy

than under the refundable subsidy. As more middle- and high-wealth households adopt, they

finance adoption out of savings, reducing asset accumulation. The resulting decline in capital

lowers wages and raises interest rates. That shift hurts low-wealth households (who rely on

wages) and benefits high-wealth households (who rely on capital income).

Panel (b) shows that net-of-subsidy lump-sum transfers fall less under nonrefundable

subsidies than under refundable subsidies, because fiscal costs are lower. But that improved

transfer channel is not enough to offset the weaker wage gains for the poor. Overall, nonre-

fundability slightly reduces aggregate welfare gains but substantially reduces support among

low-wealth households.

In short: making the subsidy nonrefundable modestly alleviates fiscal pressure, but further

erodes support among low-wealth households by excluding many of them from eligibility and

by muting short-run wage gains. Incorporating permanent productivity shocks could change

this result, and is left for future work.
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Figure 9: Aggregate and across asset tercile adopter stock, experiment 1 and experiment 2.

(a) Aggregate adoption, experiment 1 (b) Aggregate adoption, experiment 2

(c) Asset-tercile adoption, experiment 1 (d) Asset-tercile adoption, experiment 2

Experiment 3: Income-Capped Subsidy under Progressive Financing

Finally, I analyze income-capped subsidies that restrict eligibility to middle- and lower-

income households. I consider refundable subsidies but only available to households with

income below a certain threshold. Income-capped subsidies aim to target adoption support

toward liquidity-constrained households, while avoiding fiscal costs from subsidizing wealthier

households who may adopt regardless of subsidies.

Such income-capped subsidies have been briefly implemented in the US for clean vehicle

purchases between 2023 and 2025 (see US Department of Energy 2024 and IRS (2025)). The

Inflation Reduction Act (IRA) established, starting in 2023, modified adjusted gross income

(AGI) limits for clean vehicle credits, with different caps for new and used electric vehicles.

DOE (2024) summarizes that to qualify for a credit, a filer’s modified AGI must be below a
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Figure 10: Aggregate dynamics under progressive financing policy with LBD, with and
without nonrefundable adoption subsidies, experiment 2.

(a) Capital-labor ratio (b) Lump-sum transfers

limit based on their tax filing status, using either their income from the year they purchased

the vehicle or the year prior, whichever is lower. This design targets adoption support toward

liquidity-constrained households, but it may slow aggregate adoption if wealthier households

are the primary drivers of LBD spillovers. Allcott et al. (2024) argues that the IRA’s income

caps were generous enough that the majority of new vehicle buyers still qualified for the

credit. Since the passage of the One Big Beautiful Bill, clean vehicle credits were eliminated

starting on September 30, 2025, regardless of income, according to IRS (2025).

Table 9 reports the results. This is the only policy among the three variants that reduces

aggregate welfare: the average EV change is −0.09%. Only 2.2% of households strictly benefit.

The direct subsidy and LBD channels remain positive, but the direct subsidy channel shrinks

sharply because all households at or above the cap (here set to median income) are ineligible.

The average price effect turns positive – general equilibrium prices help on net – but the

transfer effect remains strictly negative, and still large.

Figure 11 shows why. Panels (a)–(b) reveal that aggregate adoption slows sharply under

income-capped subsidies. In fact, panel (b) shows that with income caps, subsidies fail to raise

aggregate adoption above the no-subsidy path. Panels (c)–(d) show that the cap prevents

the “early adopter push” among middle- and high-wealth households that existed under

uniform access. Low-wealth households adopt slightly faster in the very short run, but by

the medium run their adoption pace falls back to the no-subsidy level, while high-wealth

households eventually speed up.

Figure 12 shows the resulting macro dynamics. In the short run, aggregate savings and

the capital-labor ratio barely move relative to the no-subsidy path (panel (a)), because the
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Table 9: Decomposition of experiment 3 welfare changes and distribution of winners by asset
tercile

Panel A. Aggregate Welfare Decomposition

Component Avg. EV (%) Winner (%)

Direct subsidy +0.04 100.0
LBD-induced cost change +0.00 100.0
Price effect +0.02 77.0
Transfer effect −0.15 0.0

Total −0.09 2.2

Panel B. Winner Shares by Asset Tercile (%)

Bottom Middle Top Aggregate

Direct subsidy 100.0 100.0 100.0 100.0
LBD-induced cost change 100.0 100.0 99.9 100.0
Price effect 33.6 97.9 100.0 77.0
Transfer effect 0.0 0.0 0.0 0.0

Total 0.0 0.0 6.9 2.2

Notes: Winner share is the fraction of households with strictly positive
consumption-equivalent variation (EV). Tercile population masses are [0.335,
0.343, 0.322].

composition of adopters does not shift much. In the medium run, however, aggregate savings

fall sharply. Two forces drive this. First, because the cap slows aggregate adoption, the policy

fails to accelerate LBD. Costs stay high, so per-household subsidy payouts remain large

whenever the subsidy is actually claimed. Financing those payouts causes net-of-subsidy

lump-sum transfers to fall even more than under the uncapped subsidy (panel (b)), despite

the tighter eligibility. Second, the larger drop in transfers depresses savings, which lowers

the capital-labor ratio and wages in the medium run. Lower wages cut labor income for low-

and middle-wealth households and slow their adoption even further. At the same time, the

lower capital-labor ratio raises interest rates, benefiting high-wealth households, who rely on

capital income and subsequently speed up adoption.

This explains the sign flip in the average price effect: higher interest rates now benefit

the asset-rich enough to outweigh wage losses in the aggregate, even though wage-dependent

households are worse off. But the transfer effect remains strongly negative and is borne by

everyone.

Figure 13 shows the welfare impact across the income-wealth distribution. Almost all

groups experience welfare losses, with the largest losses in the middle of the distribution.

Middle-income, middle-wealth households typically do not qualify for the subsidy but still

face adverse general equilibrium price and transfer effects. Low-wealth households lose less
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Figure 11: Aggregate and across asset tercile adopter stock, experiment 1 and experiment 3.

(a) Experiment 1 (b) Experiment 3

(c) Asset-tercile adoption, experiment 1 (d) Asset-tercile adoption, experiment 3

because they are more likely to qualify directly. High-wealth households also lose less because

higher interest rates partially offset the transfer losses. The policy is therefore both inefficient

(negative aggregate EV) and distributionally perverse (large welfare losses concentrated in

the middle).

6.2 Extension: Activating Pollution Damages and Inequality

The previous experiments abstracted from pollution damages, even though environmental

damages – and their unequal incidence – are core justifications for clean energy policy. I now

activate the pollution term in utility (equation (11)), which penalizes high ambient pollution

more for lower-consumption households, consistent with evidence on environmental inequality

Banzhaf, Ma, and Timmins (2019) and Sergi et al. (2020).
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Figure 12: Aggregate dynamics under progressive financing policy with LBD, with and
without income-capped adoption subsidies, experiment 3.

(a) Capital-labor ratio (b) Lump-sum transfers

Figure 13: Welfare impact of subsidizing solar panel adoption cost across the income-wealth
distribution, experiment 3

I introduce pollution damages into experiment 2 (nonrefundable subsidy under progressive

financing) and recompute welfare. The aggregate EV change from transitioning to clean

energy without subsidies is now 12%, reflecting the large benefits from reduced pollution.

Because pollution now enters utility directly, this 12% transition gain is not quantitatively

comparable to the 0.3% transition gains in the tax experiments: it reflects the environmental
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Table 10: Decomposition of welfare changes and distribution of winners by asset tercile when
pollution damages are incorporated.

Panel A. Aggregate Welfare Decomposition

Component Avg. EV (%) Winner (%)

Direct subsidy +0.20 100.0
LBD-induced cost change +0.00 100.0
Price effect −0.01 56.7
Pollution effect +2.15 100.0
Transfer effect −0.32 0.0

Total +2.02 100.0

Panel B. Winner Shares by Asset Tercile (%)

Bottom Middle Top Aggregate

Direct subsidy 100.0 100.0 100.0 100.0
LBD-induced cost change 100.0 100.0 100.0 100.0
Price effect 0.1 75.1 100.0 56.7
Pollution effect 100.0 100.0 100.0 100.0
Transfer effect 0.0 0.0 0.0 0.0

Total 100.0 100.0 100.0 100.0

Notes: Winner share is the fraction of households with strictly positive
consumption-equivalent variation (EV). Tercile population shares are [0.355,
0.312, 0.333].

externality rather than just technology diffusion. I then evaluate the marginal welfare effects of

subsidizing adoption in this setting. Table 10 summarizes the results. Accounting for pollution

damages dramatically raises the aggregate welfare gain from subsidizing adoption: the average

EV increases from 0.05% in experiment 2 to 2.02%, and the winner share rises from 78.1% to

100%. Every household is strictly better off once pollution damages are internalized.

Figure 14 compares aggregate adoption with and without pollution damages (no-subsidy

and subsidy cases). When pollution damages are active, baseline (no-subsidy) adoption is

slower. The reason is precautionary: pollution enters utility in a way that increases effective

risk aversion and prudence for X > X̄, especially at low consumption levels.

Differentiating equation (11) gives

uc(c,X) = c−σ + ν, ω, (X − X̄), c̄ω, c−(ω+1),

ucc(c,X) = −σ, c−(σ+1) − ν, ω(ω + 1), (X − X̄), c̄ω, c−(ω+2),

uccc(c,X) = σ(σ + 1), c−(σ+2) + ν, ω(ω + 1)(ω + 2), (X − X̄), c̄ω, c−(ω+3).

For X > X̄, both |ucc| and uccc increase. Thus risk aversion A(c;X) = −ucc/uc and prudence

P (c;X) = −uccc/ucc rise with pollution. Pollution therefore increases the marginal value of

53



Figure 14: Aggregate adopter stock, experiment 2 and extension with pollution damages.

(a) Experiment 2 (b) Experiment 2 with pollution damages

Figure 15: Aggregate dynamics under progressive financing policy with LBD, with and
without nonrefundable adoption subsidies, for pollution extension of experiment 2.

(a) Capital-labor ratio (b) Lump-sum transfers

liquid wealth. Households save more for self-insurance, and they become more reluctant to

give up liquidity for an irreversible investment like solar.

Formally, let V N(a, ℓ, 0) and V A(a, ℓ, 0) be the value functions from not adopting and

adopting. Adoption requires paying pt up front, reducing liquid assets from a to a− pt. The
adoption surplus is:

∆(a, ℓ; pt) = V A(a− pt, ℓ, 0)− V N(a, ℓ, 0).

A second-order expansion around a gives:

V A(a− pt, ℓ, 0) ≈ V A(a, ℓ, 0)− V A
a (a, ℓ, 0)pt +

1
2
V A
aa(a, ℓ, 0)p

2
t
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thus, adopting entails an additional second-order welfare loss from giving up liquid wealth,
1
2
|V A

aa(a, ℓ, 0)|p2t . Because V A
aa < 0, this term measures the curvature-induced penalty from

converting liquid assets into an illiquid investment. The curvature |V A
aa| is tied to |ucc| through

the Euler condition, so when pollution damages are active and ω > 1, the value function

becomes more concave, and the shadow value of liquidity rises. Households, therefore, face a

more substantial option value of waiting: they postpone adoption until wealth is sufficiently

high or technology costs have declined further.

Let a⋆(ℓ; pt) denote the adoption threshold such that ∆(a⋆, ℓ; pt) = 0. Because the adoption

surplus falls with greater curvature, ∂a⋆(ℓ; pt)/∂|V A
aa| > 0, pollution raises the wealth level

required for adoption and slows the extensive-margin response in the early transition, as

seen in Figure 14. This delay feeds back through LBD, flattening cost reductions and further

slowing aggregate adoption.

The same higher curvature that discourages early adoption also alters aggregate saving

behavior. In the pollution extension, households are more prudent in a steady state and

ultimately accumulate more wealth, but during the transition, they expect pollution to decline

as adoption expands. Because ∂uc/∂X > 0, an expected improvement Et[Xt+1] < Xt lowers

the expected future marginal utility on the right-hand side of the Euler equation,

uc(ct, Xt) = β(1 + rt+1)Et[uc(ct+1, Xt+1)].

To restore equality, households increase current consumption relative to ct+1, temporarily

reducing saving. As a result, aggregate capital falls at the start of the transition (Figure 15,

panel (a)), before recovering as pollution stabilizes and the precautionary motive dominates.

This pattern contrasts with the benchmark without pollution damages (Figure 10, panel

(a)), where capital initially rises because agents expect higher future returns from adoption.

Hence, pollution damages raise long-run prudence and steady-state saving, but in the short

run, the anticipation of cleaner future conditions induces a front-loading of consumption that

depresses capital and slows the overall diffusion of adoption.

The stronger curvature of preferences under pollution damages also amplifies the re-

sponsiveness of adoption to subsidies and the resulting welfare gains. Figure 14 shows that

while overall adoption eventually converges in both environments, the relative acceleration of

adoption due to the subsidy is much larger when pollution damages are active. With pollu-

tion damages unaccounted for, the subsidy primarily affects adoption through its financial

channel—by lowering effective installation costs and speeding up LBD—yielding modest

aggregate welfare gains. When pollution damages are included, however, the same subsidy

additionally reduces future pollution exposure, generating a direct utility improvement and
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Figure 16: Welfare impact of subsidizing solar panel adoption cost across the income-wealth
distribution, extension with pollution

indirectly mitigating the precautionary motive that suppresses early saving. As a result,

households adopt more rapidly, pollution declines sooner, and the welfare impact of the

subsidy expands well beyond its pure LBD effects. Table 10 quantifies this amplification: the

equivalent variation rises from 0.05% in experiment 2 to 2.02% in the pollution extension,

and every household benefits once pollution damages are accounted for.

In general equilibrium, the subsidy alleviates the short-run contraction in capital observed

in Figure 15, panel (a) by accelerating the decline in Xt. Faster abatement raises effective

lifetime wealth and allows precautionary saving to recover earlier, reinforcing the positive

income effect of the subsidy. Hence, when pollution damages are active, the subsidy internalizes

both the LBD and pollution externalities: it increases the speed of adoption, smooths the

short-run adjustment of capital, and yields substantially larger welfare gains for all households.

Because households do not internalize the social benefit from lower pollution, the stronger

precautionary motive amplifies the wedge between private and social incentives to adopt,

which further magnifies the aggregate welfare benefit of subsidizing clean technology adoption

once pollution damages are accounted for.

The welfare gains from subsidizing adoption are also more progressive when pollution

damages are accounted for. Figure 16 shows that the average welfare improvement declines

monotonically with wealth, with the most significant gains accruing to lower- and middle-

wealth households. This pattern reflects two reinforcing mechanisms. First, low-wealth
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households are more exposed to the disutility from pollution in the baseline, thus the reduction

in pollution damages brought about by faster adoption generates a larger direct welfare benefit

for them. Second, pollution damages increase prudence and the marginal value of consumption

more strongly for liquidity-constrained households. The subsidy’s income effect—through

higher effective wealth and lower precautionary saving demand—is proportionally greater for

these groups. As a result, the welfare impact of the subsidy is both larger in aggregate and

more progressive when pollution damages are active. Unlike in the baseline without pollution,

where gains were concentrated among higher-wealth adopters, every household type benefits

once pollution exposure is internalized, and the relative improvement is most significant

among those who were initially most vulnerable to pollution and liquidity constraints.

In summary, once pollution damages are accounted for, subsidies internalize two external-

ities at once: LBD and environmental harm. The result is (i) much larger aggregate welfare

gains, (ii) universal support, and (iii) a strongly progressive distribution of benefits. This

stands in contrast to the baseline without pollution, where gains were modest, support was

incomplete, and financing burdens could be regressive.

6.3 Robustness

Table 11 presents a broad set of robustness checks examining how welfare gains and

political support vary with key model parameters and policy design features. The qualitative

conclusions are broadly robust but not universal. While many specifications deliver positive

aggregate welfare gains and broad-based winners, several experiments produce the opposite

outcome. For example, the income-capped subsidy generates a significant aggregate welfare

loss (−0.15%) with no households strictly better off and losses concentrated in the middle of

the distribution. More generally, policy designs that materially restrict subsidy access of early

adopters or parameter combinations that substantially slow diffusion can yield aggregate

welfare losses and highly skewed incidence.

The results can be grouped into four categories: technology parameters, subsidy design,

pollution-induced utility damages, and financing design. Importantly, only changes to tech-

nology parameters or subsidy design are quantitatively comparable to the baseline results,

because these reparameterizations and subsidy designs only change the transition dynamics

while preserving the steady states. Changes to financing design or pollution-induced utility

damages alter the steady state itself, making quantitative comparisons less meaningful. I

therefore focus on qualitative patterns for those cases.

Technology Parameters

57



Varying the speed of diffusion of clean technologies (θt) produces the strongest quantitative

differences. Faster diffusion substantially magnifies welfare gains by accelerating cost declines,

adoption rates, and learning spillovers, raising aggregate welfare to about 3 percent. Conversely,

slower diffusion sharply reduces welfare and leaves only a small share of households better

off, highlighting that sluggish diffusion can offset the benefits of subsidy policies. Adjusting

the LBD elasticity (ξ) or exogenous cost decay (λ) yields smaller effects: faster learning

marginally increases welfare, whereas slower learning or slower exogenous cost decline slightly

reduce it. These patterns suggest that dynamic spillovers matter primarily through their

interaction with diffusion rather than the exact curvature of the learning function.

Subsidy Design

Reducing the baseline nonrefundable subsidy rate from 30% to 15% increases aggregate

welfare by 25 percentage points and maintains universal winners. This finding underscores that

even moderate subsidies can effectively catalyze adoption and generate broad-based benefits

while limiting fiscal costs. However, replicating experiment 3’s income-capped subsidy when

accounting for pollution preferences maintains negative aggregate welfare and concentrated

losses, indicating that restricting subsidy access of earlier adopters can undermine policy

effectiveness regardless of other model features. Making the subsidy refundable maintains

positive welfare gains across the distribution, but reduces aggregate welfare by 10 percentage

points compared to the baseline nonrefundable design, reflecting higher fiscal costs that

dampen net benefits when households face disutility from pollution. Finally, making the

refundable subsidy income capped again yields negative aggregate welfare and concentrated

losses, reinforcing that limiting subsidy access of early adopters can negate policy benefits.

Heterogeneous Pollution Preferences

Adjusting pollution-related parameters also leaves the main result that subsidies are

universally welfare-enhancing intact. Importantly, these exercises are not quantitatively

comparable to the baseline, as they change the steady-state equilibra. Thus, I focus on

qualitative patterns. Equalizing pollution exposure across households (ω = 0) raises aggregate

welfare by EV of about 0.78% and maintains universal winners. However, interestingly,

shutting down pollution heterogeneity increases welfare gains of lower-wealth households

relative to other groups’, as an equal change in utility from pollution reduction represents a

larger fraction of their baseline utility. The model’s conclusion that subsidies are universally

beneficial remains robust to smaller pollution inequality parameter (ω half its baseline value)

or lower pollution disutility (ν halved).
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Table 11: Robustness of welfare gains and political support across parameterizations

Panel A. Consumption-equivalent welfare gains (EV, %)

Scenario Bottom Middle Top Aggregate

Baseline (prog. tax + nonref. subs. + pollution) 1.30 2.85 1.83 2.02

Technology Parameters (quantitatively comparable)

θt × 1.25 (fast diffusion) 1.91 4.28 2.73 3.01
θt × 0.5 (slow diffusion) −0.07 −0.32 −0.17 −0.19
ξ × 1.5 (faster learning) 1.30 2.85 1.84 2.02
ξ × 0.5 (slower learning) 1.30 2.86 1.84 2.03
λ× 0.5 (slower exog. decay) 1.18 1.85 1.42 1.50

Subsidy Design (quantitatively comparable)

τ × 0.5 (less subsidy) 1.42 3.25 2.06 2.27
Income-capped subsidy −0.11 −0.19 −0.15 −0.15
Refundable subsidy 1.23 2.71 1.74 1.92
Refundable, income capped subsidy −0.11 −0.20 −0.16 −0.16

Pollution Preferences (steady states change; qualitative comparison only)

ω = 0 (uniform pollution exposure) 0.84 0.73 0.78 0.78
ω × 0.5 (less pollution exposure inequality) 1.23 1.95 1.55 1.59
ν × 0.5 (less pollution disutility) 0.63 1.40 0.86 0.98

Financing Design (steady states change; qualitative comparison only)

Flat tax financing 0.79 1.64 1.10 1.18
Less progressive tax 0.82 1.69 1.12 1.23
More progressive tax 1.65 3.63 2.29 2.58

Panel B. Share of households with EV > 0 (%)

Scenario Bottom Middle Top Aggregate

Baseline (prog. tax + nonref. subs. + pollution) 100.00 100.00 100.00 100.00

Panel A. Consumption-equivalent welfare gains (EV, %)

θt × 1.25 (fast diffusion) 100.00 100.00 100.00 100.00
θt × 0.5 (slow diffusion) 0.15 7.83 18.17 8.54
ξ × 1.5 (faster learning) 100.00 100.00 100.00 100.00
ξ × 0.5 (slower learning) 100.00 100.00 100.00 100.00
λ× 0.5 (slower exog. decay) 100.00 100.00 100.00 100.00

Technology Parameters (quantitatively comparable)

τ × 0.5 (less subsidy) 100.00 100.00 100.00 100.00
Income-capped subsidy 0.00 0.00 0.00 0.00
Refundable subsidy 100.00 100.00 100.00 100.00
Refundable, income capped subsidy 0.00 0.00 0.00 0.00

Pollution Preferences (steady states change; qualitative comparison only)

ω = 0 (uniform pollution exposure) 100.00 100.00 100.00 100.00
ω × 0.5 (less pollution exposure inequality) 100.00 100.00 100.00 100.00
ν × 0.5 (less pollution disutility) 100.00 100.00 100.00 100.00

Financing Design (steady states change; qualitative comparison only)

Flat tax financing 100.00 100.00 100.00 100.00
Less progressive tax 100.00 100.00 100.00 100.00
More progressive tax 100.00 100.00 100.00 100.00

Notes: “Bottom/Middle/Top” report average consumption-equivalent welfare gain (EV) within each initial
wealth tercile. “Aggregate” reports the average EV across all households in that scenario. Rows are grouped
into (i) technology parameters and (ii) subsidy design, which keep the same initial steady state as the baseline
and can be compared quantitatively, and (iii) pollution preferences and (iv) financing design, which require
recomputing the steady state. For groups (iii) and (iv), EV levels are internally valid but not quantitatively
comparable to the baseline or to groups (i)–(ii). Panel B reports the fraction of households with strictly
positive EV.
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Financing Design

The model’s qualitative conclusions also hold under alternative financing designs. Similar

to adjustments to pollution preference parameters, these exercises change the steady-state

equilibria, so I focus on qualitative patterns. Switching from the baseline progressive labor

income tax financing to uniform, less progressive, or more progressive financing maintains

positive aggregate welfare gains and broad-based winners.

Overall, the robustness exercises show that the paper’s main conclusions hold under a broad

but not universal set of assumptions. Subsidies generally enhance aggregate welfare and yield

widespread benefits when technology diffusion is sufficiently fast and early (wealthy) adopters

have subsidy access. However, several experiments demonstrate that these conclusions can

weaken or even reverse when diffusion is sluggish and subsidy eligibility of early adopters

is restricted. In particular, income-capped subsidies, and parameterizations that restrict

diffusion, can generate negative aggregate welfare changes. Thus, the robustness analysis

highlights the boundaries of the main results: the welfare and equity benefits of clean energy

subsidies are not automatic, but depend on policy designs that sustain diffusion and maintain

access for early adopters.

7 Conclusion

This paper examines the equity and efficiency of clean energy subsidies through the case of

US residential rooftop solar. By combining new empirical evidence on learning-by-doing with

a heterogeneous agent general equilibrium model featuring incomplete markets, irreversible

adoption, and unequal pollution damages, I quantify how alternative subsidy and financing

designs shape adoption, prices, and welfare across the income-wealth distribution.

The analysis shows that static incidence measures overstate the regressivity of residential

solar subsidies. Once learning-by-doing spillovers are accounted for, subsidies accelerate cost

declines, expand adoption, and generate broad welfare gains – even when direct fiscal transfers

appear to favor higher-wealth households. When unequal pollution exposure and its health

damages are incorporated, the gains become both universal and progressive: every household

benefits, and the poorest benefit most from cleaner air and faster cost declines.

The results also show that policy design matters. Progressive tax financing, intended

to improve fairness, can unintentionally dampen early adoption, weaken short-run wage

gains, and erode support among low-wealth households. Nonrefundability further excludes

liquidity-constrained households. In contrast, broadly available refundable subsidies speed

diffusion and raise aggregate welfare. The most equitable path therefore combines: (i) broad

early subsidies that accelerate learning and reduce future costs, and (ii) targeted support
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that relaxes liquidity constraints and internalizes pollution damages.

More broadly, the paper offers a quantitative framework for evaluating environmental

policy in environments with heterogeneous households, incomplete markets, and dynamic

externalities. The results for US residential solar suggest that when policy is designed to

internalize both learning and pollution damages, an accelerated clean energy transition can

also be an equitable one.

While the analysis focuses on clean energy adoption, the underlying framework is broadly

applicable to other settings in which technology diffusion interacts with inequality and public

finance. The same structure could be used to study the diffusion of electric vehicles, home

energy efficiency retrofits, or carbon capture systems, as well as non-environmental innovations

such as broadband expansion, digital payments, or health technologies. In all these contexts,

irreversible investment decisions, learning spillovers, and heterogeneous financing constraints

generate similar trade-offs between efficiency, equity, and fiscal cost. Extending the framework

to these domains would deepen our understanding of how technology policy can jointly

promote innovation and inclusion.
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Appendices

Appendix A Empirical Appendix

A.1 Data Sources and Variable Construction

A.1.1 Electricity and Energy Expenditure Data

I use the Residential Energy Consumption Survey (RECS) data from RECS (2023) to

analyze household-level annual electricity and total energy expenditure and consumption

variables. The RECS is a nationally representative survey of US households’ energy consump-

tion and expenditures, housing unit characteristics, and demographic information. I use 2020

RECS microdata, because it is the first year the survey started including state identifiers.

Including state identifiers in the analysis is essential because electricity prices vary across

states due to differences in electricity generation costs, taxes, and other factors. Due to the

lack of state identifiers in earlier RECS data, I cannot control for state fixed effects in the

regression analysis. The data includes the annual total electricity expenditure, in dollars, and

electricity consumption, in BTUs, of US households in 2020, together with information on

whether there is on-site electricity generation using rooftop solar panels, the type of heating

fuel used, and other housing unit and household characteristics. I calculate the unit electricity

price paid by households in 2020 as the ratio of the annual electricity expenditure to the

annual electricity consumption for each household.

To describe the effect of having on-site solar generation on unit electricity price paid by

households and annual electricity expenditure, I estimate the following regression specification.

ln(Yi) = α + β Solari + γXi + δs + ϵi,

where Yi is the outcome variable of interest (annual electricity expenditure, annual total

energy expenditure, electricity unit cost, or total energy unit cost) for household i; Solari is

an indicator variable for whether household i generates solar power on-site; Xi is a vector

of household and housing unit characteristics (household size, income category, age of head,

etc.); δs is state controls; and ϵi is the error term. I estimate four specifications for each

outcome variable, all with state controls, but with and without additional household and

housing unit controls using the survey weights provided in the RECS data.

I present the results of Weighted Least Squares (WLS) estimates of this regression with

and without additional controls in Table A.2. The results of the regression show that the

effect of having solar generation on the unit electricity price, presented in columns (1) and
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Table A.1: Regression results for the effect of solar generation on annual electricity and total
energy expenditure

Variables
Electricitiy Total Energy

(1) (2) (3) (4)

Solar -721.956 -709.430 -688.5617 -609.9241
(15.938) (15.881) (24.286) (27.094)

State Controls Yes Yes Yes Yes
Additional Controls Yes No Yes No
Observations 15,044 15,044 15,044 15,044

Notes: Standard errors are in parentheses. Fixed effects indicate the inclusion of state fixed effects and
additional controls refer to inclusion of factors such as household and housing unit characteristics.

(2), is negative and statistically significant. Specifically, having solar generation reduces the

unit electricity price by $0.021 per BTU, which is a substantial reduction given that the

average unit electricity price in the entire sample is around $0.041 per BTU. Thus, having

solar generation reduces the unit electricity price by almost 50%. The direction of the effect,

presented in columns (3) and (4), is similar when the dependent variable is the unit energy

price, but the magnitude of the effect is smaller. The average unit energy price in the entire

sample is around $0.026 per BTU, and having solar generation reduces the unit energy price

by $0.009 per BTU, which is around 36% of the average unit energy price.

In order to understand the total nominal magnitude of the effect of having on-site solar

generation on household’s annual electricity expenditure, I run an alternative regression

where the dependent variable is the annual electricity expenditure of households and annual

electricity consumption is an additional control. The results of this regression are presented

in columns (1) and (2) Table A.1. The results show that having solar generation reduces

the annual electricity expenditure of households by more than $700 annually, which is a

substantial reduction given that the average annual electricity expenditure in the entire

sample is around $1,500. The effect of having solar generation on the annual total energy

expenditure of households is also negative and statistically significant, but the magnitude of

the effect is smaller. The results of the regression, presented in columns (3) and (4), show

that having solar generation reduces the annual total energy expenditure of households by

around $600 annually and the average annual total energy expenditure in the entire sample

is around $2,171. Thus, having solar generation reduces the annual total energy expenditure

of households by around 30%.
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Table A.2: Regression results for the effect of solar generation on electricity and total energy
unit costs

Variables
Electricitiy Total Energy
(1) (2) (3) (4)

Solar -0.0214 -0.0214 -0.0093 -0.0091
(0.000) (0.000) (0.000) (0.000)

State Controls Yes Yes Yes Yes
Additional Controls Yes No Yes No
Observations 15,044 15,044 15,044 15,044

Notes: Standard errors are in parentheses. Fixed effects indicate the inclusion of state fixed effects and
additional controls refer to inclusion of factors such as household and housing unit characteristics.

A.1.2 Policy Shocks Instrument

Data Scope and Unit of Observation

I use the North Carolina Clean Energy Technology Center’s DSIRE (2025) database to

assemble a monthly policy shock panel. The panel is built at two geographic resolutions used

in the empirical analysis: state and county levels. I use the state-month panel for specifications

with state fixed effects, and county-month panel for specifications with county fixed effects. I

retain all program records with residential applicability (statewide, county, municipal, and

utility programs). Programs that apply to the entire state are assigned to all counties in the

state when constructing the county-month panel. I normalize county identifiers to five-digit

FIPS codes.

Dates and Activity Windows

Each program has an activation window defined by its start and end dates, defined at

monthly frequency. For programs with missing dates, I follow multiple imputation strategies.

First, I search program descriptions for date information. If an active program’s end date

is missing, I set its end month to December 2025. If a start date is missing, I use a the

date program was first listed in the DSIRE database as a proxy. For inactive programs with

missing end dates, I parse the program description for text such as ”expired in YYY” to infer

the end month when possible; otherwise, I drop the record. I assume that a program is active

in all months between its start and end dates, inclusive.

Policy Shock, Zj,t

The policy shock is a discrete timing shock that flags the onset of a new residential solar
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program in location j in month t:

Zj,t = ⊮{∃ program m with start month = t, and serving location = j}.

If multiple programs begin in the same location and time, Zj,t remains 1, i.e., it is not a

count of new programs. For IV, I use a lagged version of this variable, Zj,t−12, with L = 12

months lag, to allow for a one-year adoption response window.

Policy Generosity, gj,t

I construct a monthly policy generosity index gj,t to control measures contemporaneous

subsidy intensity in $ per watt in location j and month t. It aggregates all active programs’

incentive values mapped to a common unit of $ per watt, then sums across concurrent

programs:

gj,t ≡
∑

m∈Mj,t

Generosity per Wattm,t, Mj,t = {programs active in j at t}.

Mapping Program Parameters to Generosity per Watt

Each program’s parameterization is converted to per-watt generosity using observed NREL

(2023) average state-year price and size benchmarks. I compute the average net cost per watt

in state s, year y, denote by P̄s,y, as total price divided by total watts in a state-year. Let S̄s,y

be the average system size (in watts) in same state-year. If a state-year average is unavailable,

then I use the national-year average from the same NREL (2023) sample.

For a program m applicable to state s and month t in year y, I use the following mapping

rules:

• Rebate in ($/W): If the program offers a fixed rebate amount, use the amount as is.

• Percentage of cost (%): Multiply the percentage by the average net cost per watt

c̄s,y.

• Flat amount ($): Divide the flat amount by the average system size S̄s,y.

• Production based and other non-capital incentives: Excluded from gj,t.

If a program lists multiple parameter rows, I sum the implied generosity per watt across rows

in a month. Negative or nonsensical generosity values are set to zero.
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Appendix B Theoretical Appendix

B.1 Initial and Terminal Recursive Equilibria

Prior to the availability of the clean energy technology for adoption, households face no

adoption decision and are in state s = 0. The state space is:

Z̃ = A× L, B(Z̃) = B(A)× P (L),

and the distribution of households is given by Φ ∈ M̃, where M̃ is the set of Borel probability

measures on (Z̃, B(Z̃)).

Definition 2 Given the labor income tax rate τ ℓ, exogenous dirty energy price q̄, and ambient

air pollution function X(Φ), a recursive competitive equilibrium consists of: a value function

V : Z̃ × M̃ → R, household policy functions c, a′ : Z̃ × M̃ → R, aggregate factor demands

K,L : M̃ → R, factor price functions r, w : M̃ → R, a transfer function T : M̃ → R, a
pollution function X : M̃ → R, and law of motion H : M̃ → M̃ such that:

1. Household optimization. Given the pricing functions r(Φ), w(Φ), transfer function

T (Φ), V solves the following Bellman equation:

V (a, ℓ; Φ) =max
c≥0

U(c,X(Φ)) + βE
{
V [w(Φ)(1− τ ℓ)ℓ+ (1 + r(Φ))a+ T (Φ)− c− q̄e(c), ℓ′; Φ′]|ℓ

}
,

subject to Φ′ = H(Φ),

(B.1)

and c is the associated consumption policy function, a′ = w(Φ)(1−τ ℓ(Φ))ℓ+(1+r(Φ))a+

T (Φ) − c − q̄e(c) is the savings policy function, and E is the conditional expectation

operator.

2. Factor prices. Factor prices r(Φ) and w(Φ) satisfy the firm’s first-order conditions:

r(Φ) = FK(K(Φ), L(Φ)),

w(Φ) = FL(K(Φ), L(Φ)).

3. Government budget. Given the factor prices r(Φ) and w(Φ) and the tax rate τ ℓ, the

government runs a balanced budget every period such that T (Φ) satisfies:

T (Φ) = w(Φ)τ ℓ
∫
Z̃
ℓdΦ.
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4. Pollution. The ambient air pollution X(Φ) is a function of the aggregate energy

consumption and satisfies:

X(Φ) = Ω

(∫
Z̃
e(c(a, ℓ; Φ))dΦ

)
.

5. Market clearing. For all Φ ∈ M̃,

L(Φ) =

∫
Z̃
ℓdΦ,

K(H(Φ)) =

∫
Z̃
a′(a, ℓ; Φ)dΦ,∫

Z̃
[c(a, ℓ; Φ) + a′(a, ℓ; Φ) + q̄e(c(a, ℓ; Φ))] dΦ = F (K(Φ), L(Φ)) + (1− δ)K(Φ)−K(H(Φ)).

6. Aggregate law of motion H is generated by π and a′, explicitly stated in Appendix B.2.

Next, I characterize the recursive competitive equilibrium in the initial steady state as follows:

Definition 3 Given the labor income tax rate τ ℓ the stationary recursive equilibrium is a

value function V , household policy functions c, a′, aggregate production factors K,L, prices

r, w, q̄, government transfer T , pollution function X, and a measure Φ, with Φ ∈ M̃ invariant

under H, such that the household optimization, factor prices, government budget, pollution,

and market clearing conditions above hold, and Φ satisfies:

Φ = H(Φ).

Once adoption is available and irreversible, the terminal steady state has all households

in state s = 1. Then Z = A×L×{1}. The recursive equilibrium is defined analogously, with

q̄ replaced by q and X(Φ) = 0 for all Φ.

B.2 Explicit Statement of the Aggregate Law of Motion in the

Steady States

First, define the Markov transition function: QΦ : Z̃ ×B((̃Z))→ [0, 1] by:

QΦ((a, ℓ), (A,L)) =
∑
ℓ′∈L

Π(ℓ′|ℓ) if a′(a, ℓ; Φ) ∈ A,

0 otherwise,
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for all (a, ℓ) ∈ Z̃ and (A,L) ∈ B(Z̃). Thus QΦ((a, ℓ), (A,L)) is the probability that an agent

with current assets a and productivity ℓ ends up with assets a′ ∈ A and productivity ℓ′ ∈ L
tomorrow. Then, the aggregate law of motion for the initial steady state distribution is given

by:

Φ′(A,L) = H(Φ)(A,L) =
∫
Z̃
QΦ((a, ℓ), (A,L))

=

∫
QΦ((a, ℓ), (A,L))Φ(da× dℓ).

B.3 Explicit Statement of the Aggregate Law of Motion During

the Transition Path

Define the Markov transition functions Qt : Z → [0, 1] induced by the transition probabil-

ities π and optimal policies at+1(a, ℓ, s) and St(a, ℓ, s) as:

Qt((a, ℓ, s), (A,L, {0, 1})) =
∑
ℓ′∈L

π(ℓ′|ℓ) if at+1(a, ℓ, s) ∈ A,

0 otherwise,

for all (a, ℓ, s) ∈ Z and (A,L, {0, 1}) ∈ B(Z). Then, for all (A,L, {0, 1} ∈ B(Z)), the
aggregate law of motion for the transition distribution is given by:

Φt+1(A,L, {0, 1}) = [Γt(Φt)] (A,L, {0, 1}) =
∫
Qt((a, ℓ, s), (A,L, {0, 1}))dΦt.

Appendix C Quantitative Appendix

C.1 Calibration Details

As a sensitivity check, I adjust the baseline uniform labor income tax rate assumption to

match the 2000 US federal income tax brackets and rates presented in Table C.1, sourced

from IRS (2000). I compute the uniform labor income tax rate τ ℓ such that the average

labor income tax liability under the 2000 tax brackets equals the average labor income tax

liability under the uniform tax rate in the model’s initial steady state. Using the 2000 tax

brackets, I find that the uniform labor income tax rate that matches the average tax liability

is τ ℓ = 0.1953.
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Table C.1: Income Tax Brackets and Rates

Income Bracket ($2000) Marginal Tax Rate (%)

0 - 26,250 15%
26,250 - 63,550 28%
63,550 - 132,600 31%
132,600 - 288,350 36%
288,350 - above 39.6%

C.2 Computation Details

Steady States

Two steady states are computed:

1. Initial steady state: Clean energy technology is unavailable (s = 0), exogenous

dirty energy price is q̄, and the entire proceeds from the exogenous and flat labor

income tax rate τ ℓ is distributed lump-sum to households equally. After initializing

parameters, guess K and T , and solve the Bellman equation (B.1) using Value Function

Iteration with linear interpolation and a uniform asset grid. I use Golden Section Search

for optimization and Howard’s step for speed improvements. I compute the invariant

distribution of (a, ℓ) by iterating over the density function on a finer uniform asset grid

until convergence. Finally, I compute the K and T implied by the invariant distribution

and compare to the initial guesses, updating using a dampening parameter a = 0.95

until convergence within a tolerance threshold equal to 10−6.

2. Terminal steady state: The entire population has adopted the clean technology

(s = 1), the exogenous clean energy price is q, and the entire proceeds from the

exogenous and flat labor income tax rate τ ℓ is distributed lump-sum to households

equally. The same algorithm is used to find (K∞, T∞,Φ∞).

Transition Path Algorithm

Given a finite horizon T = 190, the model is solved under perfect foresight using an

outer-loop fixed-point algorithm:

1. Initialization: Import the value and policy functions for both the initial and terminal

steady state calculations. Also import the invariant distribution at the initial steady

state.
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2. Guessing: Guess sequences {Kt, Tt, Zt}Tt=1, where t = 1 is the period when the transition

starts and t = T is sufficiently far in the future so that I can assume that the economy

is sufficiently close to the new steady state. Also calculate the factor prices {rt, wt}Tt=1

implied by evaluating the firm’s first-order conditions at the guessed capital path.

3. Backward induction: at t = T + 1, the economy is in the terminal steady state, so

KT+1 = K∞, TT+1 = T∞, and VT+1 = V∞ and I can use the terminal value functon

from the previous step in the right-hand side of the period-T Bellman equation, given

by equations (9) and (10). From there, I solve for the household’s value and policy

functions with backward induction for t = 1, . . . , T .

4. Forward simulation: Using the policy function from the previous step, I simulate the

economy forward, starting from the invariant distribution at the initial steady state.

At each period t = 1, . . . , T , I evolve the joint distribution of households over assets,

income, and adoption status, given the transition matrix of idiosyncratic income shocks

Π and the endogenous policy functions for asset accumulation and technology adoption.

(a) Adoption desire. For each household currently in state (a, y, s = 0) (a non-

adopter), I evaluate its discrete adoption choice based on the period-t value

functions, yielding an indicator It(a, y) = 1 if adoption is preferred and 0 otherwise.

The total mass of households that wish to adopt is then

Mwant
t =

∑
a,y

ft(a, y, 0) It(a, y),

where ft(a, y, 0) denotes the joint distribution of assets and income among non-

adopters.

(b) Calvo adoption constraint. To capture gradual diffusion due to market frictions

and supply constraints, I impose a Calvo-type restriction: only a fixed fraction

θt ∈ (0, 1) of non-adopters can realize their adoption decision in any given period.

If the desired adoption mass exceeds the allowed fraction, the realized adoption

flow is scaled down proportionally:

M real
t = min

(
Mwant

t , θt
∑
a,y

ft(a, y, 0)

)
.
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The probability that a household wanting to adopt actually does so is

ρt =


1, if Mwant

t ≤ θt
∑

a,y ft(a, y, 0),

θt
∑

a,y ft(a, y, 0)

Mwant
t

, otherwise.

Hence, only a random fraction ρt of the willing adopters transition from s = 0 to

s = 1 (adopt), while the rest remain non-adopters. The resulting realized adoption

flow ρtft(a, y, 0)It(a, y) enters the law of motion for the distribution.

(c) Aggregate updates. The updated distribution ft+1(a
′, y′, s′) is then computed

by integrating the policy functions and transition probabilities over assets and

income. From this distribution, I compute the implied aggregates {Kt, Tt, Zt} for
each t, which will be used to update the outer-loop guesses in the next iteration.

5. Convergence: Compare the implied {Kt, Tt, Zt}Tt=1 to the initial guesses and modify

the guesses using a dampening parameter in (0, 1) until convergence of the guess and

updated paths within a tolerance threshold equal to 10−3.

When the model incorporates the pollution disutility in household preferences, I follow

the same algorithm with the addition of updating the ambient air pollution level sequence

{Xt}Tt=1 at each period t in the outer loop based on the aggregate energy consumption implied

by the distribution at period t.

C.3 Welfare Change Calculations

For each household state (a, ℓ, s), I compute the consumption equivalent variation (EV)

welfare change measure between the baseline and counterfactual paths.

Equivalent Variation (EV)

I define EV as the percentage change in consumption that, if applied to the baseline

consumption path, would yield the same lifetime utility as under the counterfactual path.

Thus, a positive EV indicates that the household is better off under the counterfactual

scenario. I consider two counterfactual scenarios: (i) the technology transition without any

subsidies relative to no technology transition, and (ii) subsidizing the clean energy technology

adoption at rate τ = 0.3 relative to not subsidizing. The first EV calculation captures the

welfare change from introducing the clean energy technology, while the second EV calculation

captures the welfare change from subsidizing the clean energy technology adoption at rate

τ = 0.3 relative to not subsidizing.
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In order to compute the welfare change due to the introduction of the clean energy

technology, I compute the EV for a household in initial steady state (a, ℓ) as λEV,tech(a, ℓ)

that solves:

E1

[
T∑
t=1

βtU((1 + λEV,tech(a, ℓ))ct(a, ℓ)
initial ss)

]
= E1

[
T∑
t=1

βtU(ct(a, ℓ, 0)
transition)

]
,

where ct(a, ℓ)
initial ss is the consumption path under no technology transition (the technology

remains available and the economy remains in the initial steady state) and ct(a, ℓ, 0)
transition is

the consumption path under the technology transition, without any subsidies. If λEV,tech(a, ℓ) >

0, then the household is better off with the introduction of the clean energy technology and

supports the transition. Under the CRRA utility specification, the EV of the technology

transition can be computed in closed form as:

λEV,tech(a, ℓ) =

exp
{
(1− β)[V1(a, ℓ, 0)transition − V (a, ℓ)initial ss]

}
− 1, if σ = 1,[

V1(a,ℓ,0)transition

V (a,ℓ)initial ss

] 1
1−σ − 1, if σ ̸= 1,

where V1(a, ℓ, 0)
transition is the value function at t = 1 under the scenario with no adoption

subsidy during the technology transition and V (a, ℓ)initial ss is the value function at the initial

steady state when the clean technology is unavailable.

Formally, let ct(a, ℓ, s)
τ be the consumption policy function at time t = 1, . . . , T , under

a scenario with adoption subsidy τ for a household with state (a, ℓ, s) at the initial steady

state t = 0. Then, the EV from subsidizing the clean energy technology adoption at rate

τ = 0.3 relative to not subsidizing for a household in initial steady state (a, ℓ) is computed as

λEV,subs(a, ℓ) that solves:

E1

[
T∑
t=1

βtU((1 + λEV,subs(a, ℓ))ct(a, ℓ, 0)
τ=0)

]
= E1

[
T∑
t=1

βtU(ct(a, ℓ, 0)
τ=0.3)

]
,

Under the CRRA utility specification, the EV can be computed in closed form as:

λEV,subs(a, ℓ) =

exp {(1− β)[V1(a, ℓ, 0)τ=0.3 − V1(a, ℓ, 0)τ=0]} − 1, if σ = 1,[
V1(a,ℓ,0)τ=0.3

V1(a,ℓ,0)τ=0

] 1
1−σ − 1, if σ ̸= 1,

where V1(a, ℓ, 0)
τ=0 is the value function at t = 1 under the scenario with no adoption subsidy

for non-adopters and V1(a, ℓ, 0)
τ=0.3 is the value function at t = 1 under the scenario with a

30% adoption subsidy for a household with initial state (a, ℓ) at t = 1.
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