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Abstract

I study the aggregate and distributional effects of clean energy subsidies on US
residential rooftop solar panel adoption. Using installation-level data on residential
solar system installations, I provide new evidence on learning spillovers and estimate
learning elasticities to discipline a heterogeneous agent general equilibrium model
with incomplete markets, irreversible adoption, endogenous cost declines, and unequal
pollution damage exposures. Calibrated to US data, the model quantifies how alter-
native subsidy designs and financing schemes affect adoption, aggregate welfare, and
the distribution of gains across households. Uniform refundable subsidies financed
by a flat labor income tax raise aggregate welfare and accelerate adoption, while
progressive financing or nonrefundable credits reduce support among lower-wealth
households. When pollution damages are incorporated, the same subsidy becomes
universally welfare-improving and strongly progressive. Accounting for dynamic
spillovers and local pollution externalities reveals that clean energy subsidies can en-
hance both efficiency and equity, contrary to the view that they are inherently regressive.
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1 Introduction

Renewable (“clean”) energy technology subsidies are among the most widely used en-
vironmental policies in the United States (US), yet their aggregate efficiency and welfare
implications remain uncertain. This paper asks: How do such subsidies affect technology
adoption and welfare across the joint distribution of income and wealth in the US? Focusing
on residential rooftop solar panel adoption, I quantify both the direct fiscal incidence and the
indirect welfare consequences that arise through general equilibrium effects, cost declines,
and pollution externalities. I find that uniform refundable subsidies financed by a flat income
tax raise aggregate welfare and accelerate adoption, whereas progressive financing or non-
refundable subsidy designs slow diffusion and reduce welfare. When pollution damages are
incorporated, the same subsidy becomes universally welfare-improving and progressive, as
cleaner air yields the largest gains for more exposed households.

These results challenge the perception that clean energy technology subsidies are inherently
regressive. In the US, the top income quintile receives over half of all federal tax credits
for residential energy efficiency improvements, according the Internal Revenue Service’s
(IRS) Statistics of Income (SOI) data. Although these programs are financed primarily
by progressive income taxes, they function as transfers from the general taxpayer base to
households that are already affluent enough to adopt costly clean technologies. In this sense,
the benefit incidence of subsidies appears regressive even if the tax incidence of financing is
not.

Yet this static view overlooks two key externalities. First, wealthier households consume
more energy and thus are responsible for a larger share of residential emissions. Thus,
subsidizing their adoption of clean energy technologies can yield larger emissions reductions.
Because poorer households are more exposed to local air pollution, these environmental
improvements disproportionately benefit them. Second, early adopters create learning-by-
doing spillovers that reduce future installation costs, making adoption more affordable for
later — often less wealthy — households. In dynamic general equilibrium, policies that initially
appear to favor the rich may therefore yield greater long-run gains for the poor.

To quantify these mechanisms, I develop and calibrate a heterogeneous agent dynamic
general equilibrium model with incomplete markets, irreversible technology adoption, endoge-
nous cost reductions from learning-by-doing, and unequal exposure to pollution damages.
Using detailed microdata on household income, wealth, and expenditures, installation-level
solar costs, and the timing of federal and state policy changes, I parameterize the model and
evaluate alternative subsidy designs and financing schemes—comparing refundable, nonre-
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captures both the aggregate efficiency and heterogeneous welfare implications of policies that
subsidize clean technology adoption.

Broadly, prior research falls into two categories: (i) empirical studies on the aggregate
and distributional effects of environmental and clean energy policies, and (ii) quantitative
macroeconomic analyses of aggregate and heterogeneous effects of climate change policies
in general equilibrium. My paper connects these strands by linking empirical evidence on
technology diffusion and pollution exposure to a structural dynamic general equilibrium
framework that captures both aggregate and heterogeneous welfare effects of clean energy
technology subsidies.

Borenstein and Davis (2024) extensively document adoption patterns and the distribution
of clean energy tax credits across income groups in the US, showing that participating and
subsidy receipt rise sharply with income. Their findings highlight the apparent regressivity
of residential clean energy incentives, but do not quantify broader welfare, such as health
co-benefits from reducing local air pollution, or general equilibrium effects. Vona (2023)
provides a comprehensive overview of the empirical evidence on the multiple effects of climate
policies on well-being, emphasizing that clean-energy and energy-efficiency subsidies often
reinforce the unequal distribution of benefits when households face borrowing constraints
and high up-front adoption costs. Similarly, Levinson (2019) shows in a static framework
that taxing energy use would be both more cost effective and less regressive than subsidizing
energy efficient appliances or taxing inefficient appliances. These studies underscore the policy
relevance of distributional incidence but stop short of modeling the dynamic mechanisms —
such as learning-by-doing and endogenous cost declines — that determine how regressivity
evolves over time. My analysis builds on this evidence by explicitly modeling these dynamics
within a general equilibrium framework.

A growing set of empirical papers examines these mechanisms more directly. The paper by
Gao, Rai, and Nemet (2022) provides one of the few empirical analyses of learning-by-doing
effects in US residential solar installations, finding that economies of scale reduce both
hardware and non-hardware costs. Their results suggest that early adopters generate localized
cost spillovers that could make subsequent adoption more affordable for later adopters. On
the environmental side, Banzhaf, Ma, and Timmins (2019) review the extensive literature
documenting the strong association between ambient air pollution, poverty, and race — the
so-called environmental justice gap. Because poorer households tend to live in areas with
higher local air pollution, they are likely to gain disproportionately from policies that reduce
emissions from residential energy use. These empirical findings motivate the two externalities
at the core of my model — learning-by-doing and unequal pollution exposure — and provide

the basis for the parameters I use to calibrate the dynamic effects of clean-energy subsidies.



A separate literature develops quantitative macroeconomic models to analyze the aggregate
and distributional effects of climate policies in a general equilibrium framework. Most of these
papers focus on carbon pricing rather than subsidizing clean energy technologies. Kéanzig
(2023) finds that a restrictive carbon policy shock raises energy prices, reduces emissions,
spurs clean innovations, but also lowers economic activity and disproportionately burdens
poorer households. Benmir and Roman (2022) examine a carbon pricing path that achieves
net-zero emissions in the US by 2050 and show that it induces large redistributions of income
and wealth from poorer to richer households. Fried, Novan, and Peterman (2024) analyze how
alternative uses of carbon tax revenues affect welfare across and within generations, showing
that optimal revenue recycling can mitigate regressivity by reducing distortionary taxes
on capital and increasing the progressivity of labor taxation. In earlier work, Fried, Novan,
and Peterman (2018) highlight the importance of not only long-run outcomes, but also the
transitional welfare effects of how carbon tax revenues are recycled. Using detailed household
expenditure and emissions data, Belfiori, Carroll, and Hur (2024) similarly document that
low-income households have higher emissions per dollar of spending, making a uniform carbon
tax regressive unless revenues are redistributed progressively. Together, these papers identify
an efficiency-equity trade-off similar to the one I study, but they do so for carbon pricing.
My paper extends this analysis to subsidy-based instruments — the main policy tool used in
the US — and examines how dynamic cost declines and pollution heterogeneity reshape that
trade-off.

While economists generally view carbon pricing as the most efficient instrument for
reducing emissions, in practice — particularly in the US — climate and environmental policies
have relied far more on subsidies for clean energy technologies. As Borenstein and Davis
(2024) emphasize, relatively little is known about the economic efficiency or the distributional
consequences of such subsidy-based approaches. My contribution is to fill this gap by evaluating
clean-energy subsidies within a dynamic, heterogeneous agent general equilibrium model
that embeds both learning-by-doing and pollution externalities. This approach allows me
to quantify how the fiscal design of subsidies shapes aggregate welfare and household-level
outcomes simultaneously.

More recent work examines heterogeneity in the adoption of clean energy technologies
directly. Kuhn and Schlattmann (2024) develop a quantitative life-cycle model with unequal
adoption rates of carbon-neutral goods by income, highlighting the reduction-redistribution
trade-off inherent in different policy mixes. Lanteri and Rampini (2025) study clean technology
investment by heterogeneous firms facing financial frictions in a dynamic general equilibrium
model. They find that constrained firms optimally invest in older, dirtier technologies,

generating a positive relationship between firm size and energy efficiency. Their framework



provides a natural laboratory for analyzing the distributional effects of environmental policy
across firms, although they that exercise for future work. My paper complements these papers
by emphasizing the dual role of learning and pollution externalities in shaping adoption
dynamics and welfare and by focusing on households rather than firms.

In summary, this paper bridges the micro-level empirical literature on adoption and
pollution with the macroeconomic literature on environmental policy in general equilibrium.
It contributes by unifying these approaches in a single quantitative framework that links
micro evidence on learning and pollution exposure to macro-level welfare outcomes, providing
new insights into how clean-energy subsidies affect both efficiency and the distribution of
welfare gains.

My analysis yields three main contributions. First, I provide new empirical estimates of
localized learning-by-doing in US residential solar panel installations. Using installation-level
data merged with state and utility policy shocks — changes in subsidy generosity, eligibility,
or program timing that were plausibly exogenous to local installation trends — I find that
each doubling of cumulative installed capacity reduces system costs by about 7%, with
stronger effects when adoption is policy-driven rather than market-driven. Second, I develop
a quantitative heterogeneous agent model that jointly captures private adoption incentives,
dynamic cost spillovers, heterogeneous pollution exposure, and general equilibrium feedbacks.
Third, T use the model to evaluate the aggregate and distributional welfare consequences of
alternative subsidy and financing arrangements.

The results show that uniform refundable subsidies financed by flat labor income taxes raise
aggregate welfare and accelerate adoption, whereas progressive financing slows down adop-
tion and reduces welfare gains for liquidity-constrained households by depressing short-run
wages and transfers. Nonrefundable tax credits, which mirror the structure of the US federal
residential solar credit, further exclude low-income households but do not slow down diffusion.
Income-capped subsidies, while intended to improve the distribution of gains, slow down adop-
tion, weaken learning spillovers, and generate aggregate welfare losses that disproportionately
affect middle-wealth households. When pollution damages are included, the nonrefundable
uniform subsidy becomes universally welfare-improving and strongly progressive, as cleaner
air disproportionately benefits households with higher exposure to local pollution. Together,
these results show that the perceived regressivity of residential solar subsidies reflects a partial
equilibrium perspective. Once dynamic cost declines and pollution externalities are accounted
for, the equity-efficiency trade-off in clean energy policy becomes much weaker. Although the
analysis focuses on residential solar adoption, the framework is general and can be applied to
study the diffusion of other clean or productivity-enhancing technologies—such as electric

vehicles, energy storage, or digital infrastructure—where adoption frictions, learning spillovers,



and heterogeneous financing constraints shape both efficiency and equity.

The remainder of the paper is structured as follows. In Section 2, I summarize the data
that motivates the research questions and provide background for the model. In Section
3, I outline the structural model that I use to answer my research questions. In Section
4, T describe the complete characterization of the model used for quantitative analysis, its
calibration and fit to the data, and present the baseline model simulations. In Section 5,
I present the quantitative results on the distributional and welfare effects of a benchmark
uniform subsidy under uniform financing scheme. In Section 6, I conduct policy experiments to
evaluate the effectiveness of different policy mixes in achieving the outlined policy objectives
and majority support. Finally in Section 7, I conclude and discuss the implications of the

results for policy design and implementation.

2 Data and Empirical Motivation

Understanding how energy use, clean-technology adoption, and pollution exposure vary
across income groups in the US is crucial for assessing the equity implications of clean energy
policies. Table 1 summarizes these distributions for 2015 — the earliest year with complete
data — using multiple cross-sectional data sources.

First, using data from the US Census Bureau’s (2023) 2015 American Community Survey
(ACS) 5-Year Estimates, I construct income quintiles based on the upper income limits of
quintiles summarized in Table B19080.! I report the share of aggregate income for each
income quintile from the US Census Bureau’s (2023) 2015 ACS Table B19082 in the first row
of Table 1. The top income quintile accounts for more than half of the aggregate income in
the US.

Next, I combine the US Energy Information Agency’s (2023) 2015 Residential Energy
Consumption Survey (RECS) microdata with income categories aligned to the same quintiles.?
Weighting by household survey weights, I calculate each group’s share of total residential
energy consumption and report it in the second row of Table 1. The top quintile accounts for
roughly one quarter of total household energy use.

I then compute adoption and subsidy patterns for residential rooftop solar panel de-
ployment across income quintiles. Using the RECS 2015 indicator for on-site solar power

generation, I calculate the share of total adopters by income quintile. Adoption rises sharply

1For 2015, these limits are $17,929, $35,583, $62,600, $108,429, and the lower limit for top 5% is $146,778.

2 Annual household income is reported as a categorical variable in the RECS data, and I group households
according to the income quintile’s upper limits as closely as possible. Thus, the upper income limits for the
quintiles I report from the RECS data are $20,000, $40,000, $60,000, $100,000, and the lower limit for the
top 5% is $140,000.



Table 1: Descriptive statistics for the income quintiles in the US

Income Percentile Bottom 20% 20%-40% 40%-60% 60%-80% Top 20% Top 5%
Share of aggregate income 3.17 8.42 14.37 22.83 51.21 22.81
Share of residential energy consumption 12.59 18.16 13.07 19.75 24.42 12.01
Share of rooftop solar adoptors 0.53 3.42 9.26 16.87 43.75 26.19
Share of residential clean energy credits 0.48 4.11 4.08 21.75 48.99 20.59
Mortality damages per capita (2020 dollars pp) 4,811 3,910 3,103 2,769 2,354 NA

Notes: Reported shares and rates are in percentages, except for the mortality damage per capita
values, which is in 2020 US dollars per person (pp). NA indicates not available.

with income, as shown in the third row of Table 1. The top income quintile represents nearly
half of all rooftop solar adopters.

To measure the distribution of federal Residential Clean Energy Credits (RCECs), I use
the US Internal Revenue Service (2023) 2015 SOI data, aligning income categories as closely
as possible with the quintiles above. I calculate each income group’s share of total RCEC
value by dividing the total amount of RCECs claimed by each group by the total amount of
RCECs claimed by all income groups and report it in the fourth row of Table 1. The top
quintile receives almost half of all RCEC value. Because these credits are non-refundable —
limited by tax liability — they primarily benefit high-income households.

Together, these facts show that higher-income households consume more energy, adopt
clean technologies earlier, and capture most federal subsidies. Yet, they also account for a
larger share of emissions. Since lower-income households experience greater exposure to local
air pollution, subsidizing cleaner technologies for high-income households could still generate
progressive environmental benefits.

To document this channel, I merge county-level mortality damages from the Air Pollution
Emission Experiments and Policy Analysis (AP4) model, detailed in Dennin et al. (2024),
with county-level median income data from the US Census Bureau’s (2022) 2017 ACS 5-Year
Estimates. Mortality damages per capita decline monotonically with income — from $4,811
for the bottom quintile to $2,354 for the top quintile — as shown in the last row of Table 1,
confirming that pollution damages are disproportionately borne by poorer households. These
stylized facts motivate the model’s two central externalities: learning-by-doing and unequal

pollution exposure.

2.1 Benefits of Residential Rooftop Solar Panel System Deploy-

ment

Deploying solar panels for on-site power generation provides both private and social

benefits. Private benefits include reduced electricity bills, increased property values, and



Table 2: Average 2015 energy expenditure shares of income groups in the US

Income Percentile Bottom 20% 20%-40% 40%-60% 60%-80% Top 20% Top 5%
Share of energy expenditure in total expenditure 8.5 6.4 5.0 4.2 3.3 2.2

Note: Reported shares are in percentages.

reduced exposure to electricity price volatility. Social benefits include reduced emissions of
greenhouse gases and local air pollutants, reduced strain on the electricity grid, and increased

energy security.

2.1.1 Private Benefits

Using the 2020 RECS, I regress household electricity expenditure on a solar indicator
with state fixed effects and standard controls. Households with on-site solar spend roughly
$700 less per year on grid electricity, which is about half the sample average of $1,400 (Table
A.1). This difference is purely accounting, not causal, but illustrates magnitude.

For calibration, the key fact is that energy savings are meaningful relative to household
budgets. Using the 2015 Consumer Expenditure Survey (CES) by the Bureau of Labor
Statistics (2024), I compute the share of residential energy in total expenditure by income
quintile. As shown in Table 2, the bottom income quintile devotes 8.5% of total expenditure to
energy, compared with only 3.3% for the top quintile. These differences anchor heterogeneous

marginal utilities of consumption in the model.

2.1.2 Social Benefits

Social gains stem mainly from avoided local air pollution. In 2023, the residential sector
accounted for 15% of end-use energy consumption in the US, according to US Energy
Information Administration (2024). Much of this energy is generated from fossil fuels, which
emit local air pollutants harmful to human health, such as particulate matter (PM).? Dennin
et al. (2024) estimate that the marginal damage associated with an additional ton of PM, 5
emissions in the US to be between $73,200 and $133,000 per ton in 2020 dollars. Thus, given
the significant share of PM, 5 emissions from the residential sector, reducing emissions from

this sector could yield health benefits for local communities.

3Particle pollution, also known as particulate matter (PM), is a mixture of solid particles, such as dust,
dirt, and soot, and liquid droplets found in the air. Breathing in particle pollution can be harmful to human
health, as it can cause heart attacks, trouble breathing, lung cancer, and problems with babies. Smaller
particles, with diameters that are 2.5 micrometers or smaller, called PMs 5, pose the greatest health risks,
because they can penetrate deep into the lungs and the bloodstream.



Figure 1: Median price and size of residential solar panel system installations in the US per
quarter, 2000-2022
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Note: The shaded area represents the 25th and 75th percentiles of the distribution of prices
of residential solar panel installations.

2.2 Cost of Residential Rooftop Solar Panel System Installations

The cost of installing solar panels for on-site power generation is a significant barrier to
adoption for many households. The total cost includes the following costs: the solar panels
themselves, the inverter, the mounting hardware, the wiring, the installation labor, and the
permitting and inspection. The price of solar panel installations has been decreasing over
time due to technological advancements and economies of scale, even before accounting for
government incentives.

Using the National Renewable Energy Laboratory’s (NREL) (2023) 2022 Tracking the
Sun report data, Figure 1 shows the median installation prices per watt (W) and the median
system size of residential solar panels installations in kilowatts (kW) in the US from 2000 to
2022. The figure shows that the median installation price of residential solar panels in the US
has declined by almost 65% from 2000 to 2022, while the median system size increased by
nearly 75%. This joint trend highlights that, although unit costs fell, households increasingly
adopted larger systems, so the decline in total installation costs was slower.

Using these two series on the price and capacity of residential solar installations, I calculate
two median total costs of residential solar installation measures in the US from 2000 to 2022.

The first measure is the median gross total cost, which is the product of the median total



Figure 2: Ratio of median gross and median net system prices of residential solar PV systems
to median annual household income
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installation price per watt and the median system size. The second measure is the median
net total cost, which accounts for the state- and utility-level incentives and rebates deducted
from the gross total cost for residential solar installations. Importantly, the net total cost
measure does not account for the federal investment tax credit (ITC) for residential solar
installations, which is 30% of the gross total cost in 2022.

To assess affordability, Figure 2 reports the ratio of these cost measures to median
household income in the US, using data from the US Census Bureau’s (2022) ACS 5-Year
Estimates (Table S1901). The figure shows that the median gross cost of a residential solar
installation fell from about 65% of median household income in 2000 to around 36% in
2022. The gap between gross and net costs narrowed over time and eventually disappeared,
reflecting the expiration of many state- and utility-level support programs during this period.

The decline in residential solar installation costs is widely attributed to learning effects.
As more systems were produced and installed, both manufacturing and installation processes

became more efficient, resulting in lower prices over time.
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2.3 Did Rooftop Solar Panel Installations Experience Learning
Effects?

The idea behind the learning effect is straightforward: as cumulative experience with a
technology increases, its costs tend to fall. For technologies with positive externalities — like
residential rooftop solar — this creates a dynamic spillover: subsidizing early adopters can
lower costs for future adopters. In practice, such learning can come from improved installation
techniques, better coordination with permitting and interconnection, streamlined soft costs,
and supply-chain efficiencies.

A growing empirical literature documents these learning effects in residential solar. Nemet
et al. (2016) show that experienced installers consistently quote lower prices than novice
installers, holding system characteristics constant. The cheapest decile of systems is dispropor-
tionately installed by firms with extensive prior experience, suggesting accumulated know-how
translates into lower prices. O’Shaughnessy (2018) finds that in more concentrated local
markets, average installation costs are lower, consistent with high-volume firms moving down
their cost curves; however, if markets become too concentrated, reduced competition can offset
these gains. Nemet et al. (2020) document significant within-county knowledge spillovers
across firms between 2008 and 2014: local cumulative experience lowers installation costs,
especially for firms above a size threshold. They also find smaller, but still present, spillovers
within firms across counties. Bollinger and Gillingham (2023) estimate that each doubling of
installer experience in California reduces soft costs by about $0.12/W, implying nontrivial
but localized learning-by-doing, with relatively weak spillovers across firms. By contrast, Gao,
Rai, and Nemet (2022) argue that traditional learning-by-doing is only part of the story once
one accounts for “learning-by-searching” (innovation and R&D) and “learning-by-interacting”
(supplier networks), suggesting that measured “learning” may bundle several mechanisms.

I test for learning-by-doing in recent US residential rooftop solar installation data by
estimating how installation prices respond to cumulative past installations. The baseline
learning model assumes that installation costs decline with cumulative experience according

to a power law, as formulated by Arrow (1962):

pe=po- T, ° - exp(—A\t), (1)

where p; is the net installation price per W at time ¢ (after rebates and incentives), pq is
the initial price, Z; is cumulative installed capacity before ¢ (in number of systems or total
kW), ¢ is the learning-by-doing elasticity, and A captures exogenous secular cost declines
over time (global PV cost improvements, supply chain maturation, etc.) unrelated to local

experience. The implied learning rate is 1 — 27¢, the percent cost reduction from a doubling
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of cumulative installed capacity. Mukoyama (2006) provides a summary of other functional
forms used in the learning literature.

Because learning may operate at multiple margins, I allow for both state-level and firm-level
experience. Let s(i) denote the state of installation 7, and f(7) the installer firm. I estimate
the following specification using installation-level data from NREL’s (2023) Tracking the
Sun data, expanded to include a measure of local incentive generosity gs(;)+(;) generated from
state- and utility-level rebate programs data from North Carolina Clean Energy Technology
Center’s (2025) Database of State Incentives for Renewables & Efficiency (DSIRE):

log pi = ajgs) — £ log (T35 12) — ¢irm o0 (ij}g;t(i)_m) — XE(3) + g5y a0y + Xi0+ €4, (2)

where p; is the net price per watt of installation 4, a;(;) are fixed effects (state, county, or
firm, depending on the column), Z5%%s(7), ¢t — 12 is cumulative installed residential capacity
in state s(i), lagged 12 months, Z8™ £(5), , + — 12 is cumulative capacity installed by firm f(3)
lagged 12 months, £5at¢ and ¢5™ are the associated elasticities, ¢(7) is the installation month,
A is the common time-decay parameter, gy;), ;) i contemporaneous incentive generosity in
state s(i), X; includes installation-level controls (system size, hardware, financing, etc.), and
g; is the error term. I describe the incentive generosity variable construction in Appendix A.1.

A simple OLS estimate of equation (2) may be biased. Areas (or firms) with lower costs
may attract more installations, mechanically generating a negative relationship between price
and cumulative experience even without causal learning. Local demand shocks, installer
entry/exit, or policy changes could also jointly move both prices and cumulative adoption.
To address these endogeneity concerns, I estimate an instrumental variables (IV) version of
the model.

The IV strategy uses policy timing shocks to instrument for local cumulative installed
capacity. I construct, for each location j (state or county) and month ¢, a binary “policy
shock” variable equal to 1 if a new residential solar incentive (rebate, grant, tax credit, net
metering provision) begins in j in month ¢, and 0 otherwise. These policy onsets are taken
from the DSIRE (2025). I lag these shocks by 12 months so that they predict the stock of
cumulative installations at ¢ without directly moving prices in t. Appendix A.1.2 details
construction of both the policy shock series and the incentive generosity measure.

Intuitively, a state that rolled out a new incentive 12 months ago should have accumulated
more installs by now, even if current prices are high, and that boost in cumulative installed
capacity may generate learning-driven cost reductions today. The key advantage is that the
timing of policy introductions is plausibly exogenous to unobserved local cost shocks in later

periods.
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The two-stage least squares (2SLS) design is:
10g<I§E?)t§712) = (i) t—12 + TZs(i)1-12 + PIs(i)t—12 + Ot + Wiy 1-12'0 + Us(i) 1—12, (3)

where Z(;) ;12 is the lagged policy shock indicator, jis;) —12 are fixed effects, gy(;),—12 controls
for the generosity of incentives, Wy ;12 includes additional covariates, and u()—12 is the
error term. The first stage links cumulative installed capacity to lagged policy shocks,
conditional on fixed effects, current incentive generosity, and time trends.

The second stage replaces Z5%* in equation (2) with its fitted values:
IOg p; = aj(i) _gstate lOg (Istates(i)’t(i)712) _fﬁrm log (I?gn),t(i)—12) —)\t(l)—F'}/gs(l)’t(l) +X7,/(9+527 (4)

where Ztt are the predicted cumulative installations from equation (3). In both stages I
include contemporaneous incentive generosity g;; so that any direct price effect of current sub-
sidies is partialled out. Identification then comes from the timing of past policy introductions,
not from the current level of subsidies.

The exclusion restriction is that, conditional on current incentive generosity, fixed effects,
and common time trends, lagged policy onsets affect current installation prices only through
their impact on cumulative installed capacity (i.e., learning-by-doing), and not through any
direct price subsidy in period . This is most credible when policies are primarily adoption
incentives rather than direct per-watt price buydowns at the time of installation. I therefore
interpret the IV estimates as the causal effect of cumulative installed capacity on prices under
policy-driven expansion, rather than under purely organic market growth.

Table 3 reports the main results. Columns (1), (3), and (5) present OLS estimates with
different fixed effects and columns (2), (4), and (6) present the corresponding IV estimates.
State fixed effects are used in columns (1)—(4), and county fixed effects in (5)—(6). The
first-stage F-statistics in the IV columns (2), (4), and (6) exceed 10, indicating strong
instruments.

The estimates provide mixed but broadly supportive evidence of learning-by-doing.
Location-level cumulative installations (state or county) generally exhibit positive, sta-
tistically significant elasticities: higher cumulative capacity is associated with lower prices.
The magnitudes of these elasticities imply learning rates between roughly 1 and 8% cost
reduction per doubling of cumulative capacity, depending on the specification.

A key pattern is that IV estimates of state-level learning elasticities are substantially
larger than their OLS counterparts. In columns (2) and (4), the IV coefficient on lagged
cumulative state capacity is roughly four times the OLS coefficient in columns (1) and (3). At

the county level, the IV estimate in column (6) is nearly six times the OLS estimate in column
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Table 3: Learning-by-Doing in Residential PV with Exogenous Unexplained Decay: OLS and
IV with Fixed Effects

Independent variables (1) (2) (3) 4) (5) (6)
OLS v OLS v OLS v
log Cumulative Installs (Firm, 12m lag) —0.0073  —0.0073  —0.0097 —0.0097 —0.0073 —0.0073
(0.0003)  (0.0003)  (0.0003)  (0.0003)  (0.0003) (0.0003)
log Cumulative Installs (State, 12m lag) 0.0226 0.1027 0.0244 0.0996
(0.0022)  (0.0054)  (0.0022)  (0.0055)
log Cumulative Installs (County, 12m lag) 0.0145 0.1249
(0.0014)  (0.0055)
t 0.0029 0.0029 0.0030 0.0030 0.0031 0.0031
(0.0001)  (0.0000)  (0.0001)  (0.0000)  (0.0000)  (0.0000)
Policy Generosity x10~* —0.0034 —0.0034  —0.0034 —0.0034 —0.0091 —0.0091
(0.0002)  (0.0002)  (0.0002)  (0.0002)  (0.0005) (0.0005)
Has DC Optimizer 0.0303 0.0303 0.0347 0.0347
(0.0022)  (0.0022) (0.0022)  (0.0022)
Ground Mounted 0.0229 0.0229 0.0308 0.0308
(0.0053)  (0.0069) (0.0054)  (0.0069)
Has Microinverter 0.0098 0.0098 0.0109 0.0109
(0.0021)  (0.0024) (0.0022)  (0.0024)
Inverter Loading Ratio 0.0418 0.0418 0.0425 0.0425
(0.0038)  (0.0040) (0.0038)  (0.0040)
log Size —0.1040  —0.1040 —0.0897  —0.0897
(0.0016)  (0.0019) (0.0016)  (0.0020)
Has Tracking Bin —-0.3999  —0.3999 —0.4023 —0.4023
(0.0089)  (0.0298) (0.0089)  (0.0298)

First stage

Policy Shock (State, 12m lag) —0.7520 —0.7518
(0.0070) (0.0069)
Policy Shock (County, 12m lag) —1.1759
(0.0141)
F - Statistic 11,705.12 11,701.16 6,995.60
Number of observations 874,991 874,991 874,991 874,991 874,991 874,991
R? 0.060 0.013 0.053 0.013 0.058 0.008
Location FE state state state state county county

Notes: Robust standard errors in parentheses. Coefficients with robust standard errors in parentheses. Columns are
numbered with OLS and IV alternating. First-stage coefficients appear only under IV columns. “log Cumulative

Installs (Firm/State/County, 12m lag)” correspond to log(I?fgt +—12)s 10g(Z5(5_15), and log(sz;ﬁtflz). “Policy Shock

(State/County, 12m lag)” equals 1 if a new residential PV incentive began in that entity 12 months earlier.

(5). This suggests that OLS attenuates the true learning effect, likely due to simultaneity and
measurement, error: places with already-low prices attract adoption even absent new learning,
biasing OLS downward. By contrast, policy-driven adoption (the IV source of variation)
appears to generate stronger subsequent cost declines.

My preferred estimate is the IV specification with state fixed effects in column (2). It
addresses endogeneity using policy timing shocks, absorbs persistent state-level heterogeneity,

and retains meaningful cross-time variation in cumulative installations. The implied state-
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level learning elasticity of 0.1027 corresponds to a learning rate of about 7% per doubling of
cumulative capacity. This value disciplines the model parameter £, and the estimated common
time-decay term A (around —0.003 per month) implies secular cost declines of roughly 4% per
year that are not driven by local adoption. As expected, higher contemporaneous incentive
generosity gq(i)(;) 1s associated with lower prices, though the magnitudes are modest. Other
controls behave as expected: larger systems are cheaper per watt, and higher-end technologies
(e.g. optimizers, microinverters) are more expensive.

In summary, the regression evidence supports three conclusions. First, there is economically
meaningful learning-by-doing at the state level: cumulative local adoption lowers prices for
future adopters. Second, this effect is stronger when cumulative installations are driven by
policy shocks rather than by purely endogenous market expansion. Third, secular cost declines
unrelated to local adoption remain important. These findings align with the broader literature
and provide quantitative discipline for the model: they pin down how much today’s adopters
lower tomorrow’s prices for everyone else.

Taken together, these empirical patterns provide the foundation for the model developed
in the next section. The descriptive evidence shows that (i) clean-technology adoption and
subsidy benefits are highly skewed toward high-income households, (ii) poorer households
face higher exposure to pollution damages, and (iii) installation costs decline with cumulative
experience, consistent with learning-by-doing. These observations highlight two externalities —
technological learning and unequal pollution exposure — that shape the equity and efficiency of
energy transition policies but are not captured in static incidence analyses. To quantify their
joint implications for adoption dynamics and welfare, I now develop a heterogeneous agent
dynamic general equilibrium model with incomplete markets, irreversible clean technology

investment, endogenous cost declines, and pollution damages.

3 Model

Motivated by these empirical observations, I develop a heterogeneous agent dynamic
stochastic general equilibrium (DSGE) model with incomplete markets in the Bewley-Huggett-
Aiyagari tradition, building on Bewley (1977), Huggett (1993), and Aiyagari (1994), augmented
to include costly clean energy technology adoption and environmental externalities. Time
is discrete and the horizon is infinite. There is a continuum of infinitely-lived households.
Households supply labor, earn wage income, accumulate assets in physical capital, and
rent capital to firms. Labor income is stochastic due to an idiosyncratic productivity shock.
Households self-insure by saving subject to a borrowing constraint.

Households have preferences over consumption and ambient air pollution. Consumption
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requires energy use, and energy use is assumed to be an affine function of good consumption.
This implies (as in Table 2) that low-consumption households spend a higher share of their
budget on energy. Households can meet their energy needs using one of two technologies:
an old fossil (dirty) technology, and a new renewable (clean) technology. Energy from the
two technologies is a perfect substitute. Dirty energy use generates ambient air pollution,
which reduces utility and creates a negative externality. Before the clean technology becomes
available, all households use dirty energy and the economy is in the initial steady state.

Once the clean technology becomes available, households may switch by making a one-time
investment (e.g., installing rooftop solar panels). After adoption, the household uses clean
energy permanently. Clean energy has a lower per-unit cost than dirty energy, but adoption
requires a significant, one-time, and irreversible upfront expenditure. That expenditure cannot
be recovered. The effective adoption cost declines over time as more households adopt, due
to learning-by-doing spillovers. In the long run, all households adopt the clean technology
and the economy converges to a new (terminal) steady state.

Firms combine capital and labor to produce a final good used for both consumption and
investment. The externality from dirty energy use is not internalized by firms or consumers,
and instead reduces effective output through pollution damages. This welfare loss is larger
in utility terms for poorer households, given diminishing marginal utility of consumption.
Both firms and households take prices as given. The government taxes labor income and
uses the revenue to subsidize the clean technology’s adoption cost, rebating any surplus as a

lump-sum transfer.

3.1 Consumers

Each household is infinitely lived and has preferences over consumption and ambient air

pollution. At time ¢, a household’s individual state is described by a vector z; defined as:
2 = (ag, Uy, 5¢) € Z,

where a; € A = [0,00) is the household’s risk-free asset holding at the beginning of period
t, ¢y € L is the idiosyncratic labor productivity endowment at time ¢, and s; € {0, 1} is the
household’s utilization status of the clean energy technology at time ¢, where s; = 0 indicates
that the household is using the fuel combusting old energy technology and s; = 1 is the new
clean energy technology. Define the measurable space (Z,B(Z)), where:

B(Z)=B(A) x P(L) x P({0,1}),
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where B(.A) is the Borel g-algebra on A and P(+) the power set. The cross-sectional distribution
of households over the state space at time ¢ is represented by a probability measure ®; € M,
where M is the set of all Borel probability measures on (Z, B(Z)). For any measurable set
B € B(Z2), ®4(B) is the fraction of households with states in B at time ¢. I will denote ®,(B)
by ®; when there is no ambiguity. Aggregate objects are computed as integrals with respect
to the cross-sectional measure over states, following Huggett (1993).

Each household supplies one unit of time endowment inelastically to the labor market
with labor productivity ¢; that follows a finite-state Markov chain with transition matrix
m(¢'|¢) and a unique invariant distribution II1(¢). Households derive utility from consumption

and ambient air pollution according to:

Eo

> BU(a, X»] ,
t=0

where 5 € (0,1) is the discount factor, ¢; is consumption at time ¢, and X, denotes the
aggregate ambient air pollution at time ¢. U(-, -) is a strictly increasing and concave one-period
utility function in good consumption, strictly decreasing and convex in pollution, and E, is
the mathematical expectation conditioned on the consumer’s time-0 information.

The household budget constraint is:
e+ appr + Greg(1 — s¢) + q,6tSt + (1 — 7) S = wi(1 — 7 + (1 + r)a; + T,

subject to the borrowing constraint:

i1 2> A,

where e; = e(¢;) maps consumption to energy demand, w; and 7, denote the wage and
interest rate, respectively, ¢; and g, are the exogenous unit energy prices under dirty and
clean energy technologies, respectively, with q, <@ for all ¢, st € {0,1} is the household’s
utilization status of the clean technology, where s; = 0 indicates that the household is using
the fuel combusting old energy technology and si = 1 is the new clean energy technology,
S? € {0,1} is the irreversible binary technology adoption decision, p; is the one-time clean
energy technology adoption cost, 7; is the uniform tax credit (subsidy) for the clean energy
technology investment cost, 7¢ is the exogenous labor income tax rate, and 7T} is the lump-sum
transfer. The borrowing limit a < 0 is exogenous and the same for all households.

The discrete adoption choice S; is the main deviation from a standard Aiyagari model. S;

is chosen at the start of the period, is irreversible, and permanently upgrades the household
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to the clean technology. The law of motion is:
St = St+1 — St with St41 Z St for all ¢.

[rreversibility is a natural first approximation to lumpy household-level adoption (e.g., rooftop

solar). Extensions could allow depreciation or replacement.

3.2 Producers

A unit mass of competitive firms produces the consumption good using capital and labor:

The production function is:
Y;f = F(Kta Lt>7

where Y; is the final output, K; and L, are capital and labor demands, respectively, and
F(-,-) is a constant returns to scale production function with inputs K, and L;. Firms take

factor prices (ry, w;) as given and maximize static profits each period.

3.3 Government

The government taxes labor income at rate 7/, part of the revenue to subsidize clean-
technology adoption at rate 7;, and rebates the remainder uniformly as 7; to each household

in each period ¢. Thus, the government budget constraint is:

/ Tegtdq)t = / (E + Ttptst) dq)t, \V/t (5)
zZ zZ

3.4 Ambient Air Pollution

Ambient air pollution, X, is determined by the flow of energy in period ¢ with the

following mapping:
X, =0 ( / e(e)(1 - st)d<I>t> , (6)
z

where €)(+) is increasing. Pollution is thus a within-period externality: only energy consumed

via the dirty technology generates X;, and the disutility is contemporaneous.

3.5 Learning-by-Doing Spillover

The one-time adoption cost p; declines with cumulative adoption due to learning-by-doing

spillover. As in subsection 2.3, I assume a power-law learning function. Cumulative adoption
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before period t, denoted by Z;, is given by:

Zt:/stdq)h (7)
Z

and include an exogenous time decay component as in equation (1). The adoption cost

function is:
pr=po- Z; © - exp(—At), (8)

where pg > 0 is the initial adoption cost, & > 0 is the learning-by-doing elasticity that captures
the rate of cost reduction with each doubling of cumulative adoption, and A > 0 captures the
secular cost declines unrelated to local spillovers, such as global supply chain improvements
and technological change. As more households adopt the clean technology, p; falls for future
adopters. This spillover makes adoption socially beneficial beyond the private gain and means

that subsidies do more than redistribute cash: they accelerate cost declines for later adopters.

3.6 Market Clearing

In equilibrium, the market clearing conditions for the capital and labor markets are:

Kt:/atdq)t,
Z

Lt:/gtdfbt
Z

where the left-hand side is factor demand and the right-hand side is the factor supply. Denote
the market-clearing quantities of aggregate capital and labor by K; and L;, respectively.

Goods market clearing condition is:
/ [ct + qe(c) (1 — s¢) + ge(cr)se —i—ptSt] dd, = F(Ky, L) + (1 = 0) Ky — Ky,
z

where ¢ is the depreciation rate of aggregate capital stock.

3.7 Formulation

The model admits a recursive formulation. A household’s decision problem depends on its
individual state z; = (ay, ¢, s¢) and on the aggregate distribution ®;. ®, is the only aggregate
state: X, is a contemporaneous flow determined by current dirty energy use (and therefore
by @), so it does not enter as an independent state. Formal definitions of the initial and

terminal stationary competitive equilibria are provided in Appendix B.1.
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3.7.1 Transitional Dynamics

The main object of interest is the transition from the initial steady state with s; = 0 for all
households (no clean technology) to the terminal steady state with s, = 1 for all households
(full adoption). During the transition, households choose the irreversible adoption decision
S; € 0,1 such that

St41 = S¢ + 5S¢ > 54

The Bellman equation for a household that has not yet adopted (state (at, ¢;,0) at the
start of period t) is:

‘/t(aty gta 07 ®t) =
(

max Ulce, Xt) + BE {Viga[ars1, lerr, 05 Pria]|€e }

subject to agy 1 = wi(1 — 70 + (1 +1)a; + Ty — ¢, — Gee(cr),
max 9)

max Uler, Xt) + BE A Vi a1, b1, 1; $oga ]|}

subject to ary = wi(1 — 70 + (1 +1)a; + Ty — ¢, — qeey) — po(1 — 1)

\

subject to @1 = I'y(Dy),

where I'; : M — M is the aggregate law of motion in period ¢ governing the distribution
of households across the state variables’ tomorrow as a function of the distribution today,
and [E; is the expectation operator conditioned on the consumer’s time t information. A
household in state s; = 0 at the beginning of period ¢ will choose to adopt the clean energy
technology, i.e., set S; = 1 and be in state s;;; = 1 at the beginning of period t + 1, if the
value of adopting is greater than the value of not adopting, i.e., if the second term in the
maximization operator is greater than the first term.

After adoption, the household is in state (ay, ¢, 1) and solves:

V}(at, fu 1; CI)t) ZTCH“%( U(Ct, Xt) + ﬁEt {Vt+1[at+1, €t+17 I; q’tﬂ]wt} )

subject to az41 = wy(1 — 70 + (1 + 1r)ay + T — ¢ — th(Ct), (10)
Dy =Ty(Dy).

Definition 1 Given an initial distribution ®y € M, fiscal policies T, {1:}22,, and energy
prices {(jt,gt}toio, a competitive equilibrium is a sequence of: household value and policy
functions {Vi, ¢, a1, St, Se41 1120, aggregate factor stocks, { Ky, L1 }i2,, prices {wyg, re, pi}io,
government transfers {T;}2,, ambient air pollution levels {X;}:°2,, adoption stocks {Z:}:2,,
and distributions {®.}2, C M, such that for all t:
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1. Household optimization. The housechold’s value function V; solves the house-
hold Bellman equation given (wt,rt,pt,@,gt,Té,Tt,Tt,Xt,q)t), with policy functions

(¢t Qii1, Sev1,St) satisfying all constraints.

2. Factor prices.

Ty = FK(Kt7Lt)7
Wy = FL(Kt,Lt).

3. Government budget constraint.

/ 0,d®, = T, + / TpeSt(ag, lr, 5¢)dDs.
z z

4. Ambient air pollution.

X, =Q (/Ze(ct(at,ét,O))dCDt) .

Zt:/std®t.
Z

pe=po-Z; - exp(=At).

5. Cumulative adoption.

6. Adoption cost.

7. Market clearing.

Ky :/at+1<at7€t75t)dq)t7
Z

Lt:/ftdq)t,
Z

/z [ce(ze) + as(20) + qece(20)) (1 — ) + ge(er(z0))se — peSi(z)] d®y = F(Ky, Ly)+(1—0) Ky — Ky 1.

8. Aggregate law of motion. The aggregate law of motion Iy is induced by the transi-
tion probabilities and optimal policies a;1(a,l,s), Si(a,l,s), and is explicitly stated in
Appendiz B.3.

The key innovations of the model are: (i) heterogeneous utility damages from pollution,
(ii) an irreversible binary household adoption decision with subsidized upfront cost, (iii) a

learning-by-doing spillover that lowers that cost as cumulative adoption rises. These features
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allow me to evaluate the welfare and distributional consequences of clean-energy subsidies
along more than a simple transfer margin: subsidies both reallocate resources and accelerate
cost declines for future adopters. The model also embeds heterogeneous pollution damages,
allowing welfare comparisons across the joint income and wealth distribution.

The next section describes the calibration used in the quantitative analysis. Standard
parameters follow the literature; parameters governing adoption costs, spillovers, and pollution

are disciplined using microdata and the reduced-form estimates above.

4 Quantitative Analysis

Having laid out the structure of the model, I now turn to its quantitative implementation.
The goal is to evaluate the distributional and welfare effects of clean energy subsidies by
calibrating the model to match key features of the US economy and residential energy sector.
First, I describe the parameterization of functional forms and the calibration of the model
parameters, distinguishing between those taken from the macroeconomics literature, those
pinned down by empirical moments from household- and installation-level data, and those
estimated in my own empirical analysis (such as the learning-by-doing elasticity). Second, I
outline the computational methods used to solve the model, in the initial and terminal steady
states, and during the transition between them under alternative policy scenarios. I defer the
discussion of the pollution preference block and its calibration to Section 6.2, where I revisit

the baseline results with pollution preferences activated.

4.1 Functional Forms

I make functional assumptions for the household’s utility function, the final goods produc-
tion function, the dirty and clean energy production functions, the pollution function, and
the pollution damage function. I assume that the household’s preferences are represented by
a constant relative risk aversion (CRRA) utility function of the form:

77 —1 max{0, X — X}

u(e, X) = TV (c/o) ; (11)

where o > 0 is the coefficient of relative risk aversion for consumption, v > 0 scales ambient
pollution to utility units, X is the pollution threshold above which pollution starts to cause
utility losses, w > 0 makes damages to amplify at lower consumption levels, and ¢ is a
reference consumption level used to normalize the pollution damage term. Even though the

disutility of pollution is separable from the utility of consumption, the pollution damage
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term is nonseparable in consumption and pollution, as pollution damages are larger when
consumption is lower. Importantly, marginal utility of consumption remains positive, % > 0,
and diminishing, % <0, forall ¢ >0 and X > 0.

Energy demand is affine in goods consumption:

e(c) = mo +me,

where 79 > 0 captures baseline energy needs (e.g., grid connection) and 7; the marginal
energy intensity of consumption.

The goods production function is of Cobb-Douglas form:
F(K,L)= AK*L'™,

where « is the output share of capital, and A is total factor productivity.

Ambient air pollution is linear in aggregate dirty energy use:

X =0 (/Z e(c)(1 — st)dtb)
([ eteoa = sya).

where v is the pollution intensity of dirty energy use.

4.2 Calibration

Model parameters are divided into three groups: (i) standard macroeconomic parameters;
(ii) parameters matched to data moments; and, (iii) parameters estimated empirically. Each
model period corresponds to one year. The initial steady state represents the US economy in

2000, before large-scale rooftop solar adoption. Table 4 summarizes all baseline parameters.

4.2.1 Baseline Economy (No Pollution Disutility)

In the baseline quantitative analysis, I shut down the pollution preference block in utility.

Household utility is u(c) = Cl:a’l and ambient pollution X does not affect utility in the

baseline.

Standard Macroeconomic Parameters

I begin by assigning values to the set of standard macroeconomic parameters that are

commonly used in the heterogeneous agent macroeconomics literature. I follow Aiyagari
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Table 4: Calibration

summary and data sources

Parameter Description Value Source

Standard macroeconomic parameters

« Output share of capital 0.36 Aiyagari (1994)

6] Discount factor 0.96 Aiyagari (1994)

0 Capital depreciation rate 0.08 Aiyagari (1994)

o CRRA parameter (goods consumption) 1 Aiyagari (1994)

p Persistence of labor productivity process 0.9 Aiyagari (1994)

0. Std. dev. of labor productivity shocks 0.04 Aiyagari (1994)

a Borrowing limit -0.5 PSID (2000)

A Total factor productivity 1 normalization

Moment matching parameters

q Unit energy price without solar panels 0.04 RECS (2023)

q/q Unit energy price with solar panels 0.5 RECS (2023)

0 Fraction of households that can adopt 0.001 — 0.15 (linear) RECS (2023)

7t Uniform labor income tax rate 0.1953 IRS (2000)

T Subsidy rate for solar adoption cost 0.3 Lane (2025)

o)y Initial investment cost to income ratio, 2000 0.7 NREL (2023), Census (2024)

Estimated parameters

13 Learning-by-doing (LBD) elasticity 0.1027 NREL (2023), DSIRE (2025)

A Exogenous cost decay parameter 0.0213 NREL (2023), DSIRE (2025)

Mo Energy consumption function constant 0.87 BLS (2024), RECS (2023)

M Energy consumption function slope 0.74 BLS (2024), RECS (2023)

Pollution block (extension)

X PM, 5 threshold 9 EPA (2024D)

c Median baseline consumption 1.4590 Model moment
. e . ) Vodonos, Awad, and Schwartz (2018),

v Pollution utility scale (MWTP match) 0.0471 EPA (2024c), CDC (2023), BLS (2024)
e Dennin et al. (2024),

@ Inequality lever 2838781 BLS (2024), Census (2024), Census (2025)

¥ PM, 5 intensity of dirty energy consumption 6.8163 EPA (2024a)

(1994) and set the output share of capital, o, to 0.36, the discount factor, 3, to 0.96, and the
capital depreciation rate, d, to 0.08. The total factor productivity of goods production, A, is
normalized to 1. Idiosyncratic labor endowment process, ¢;, follows a persistent autoregressive

process with a persistence parameter of p and a standard deviation of o.:

log(¢y) = plog(li—1) + 0./ 1 — p?ey,

where g; ~ N(0, 1). I discretize this earnings process using the Tauchen method. I parameterize
this AR(1) labor productivity process with persistence parameter p = 0.9 and innovation
standard deviation o. = 0.04 as in one of the parameter combinations considered by Aiyagari
(1994). Preferences over consumption are represented by a constant relative risk aversion
(CRRA) utility function with a coefficient of relative risk aversion, o, equal to 1, corresponding
to log-utility.

Agents face a non-state-contingent borrowing constraint ¢’ > a. The theoretical benchmark
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is the natural borrowing limit (NBL), defined as the present value of the lowest realizable
future labor income stream under the no default (solvency) condition; see, Aiyagari (1994).*

NBL ~ —5 in consumption units. Using the

Under my baseline parameterization, this implies a
NBL as the operative constraint, however, leads to unstable dynamics and excessive borrowing
on a finite grid in this environment (large mass at the constraint and slow convergence along
transitions). Following standard practice in incomplete-markets models, I set a = —0.5,
which corresponds to a debt-to-income ratio of approximately 31% in the initial steady state,
consistent with the average US household debt-to-income ratio of 30% in 2000 University of

Michigan’s (2000) Panel Study of Income Dynamics (PSID).

Moment Matching Parameters

The second set of parameters matches empirical moments from household energy use,
residential solar installation data, and macroeconomic aggregates. Unit energy prices are
pinned down to match the average unit electricity prices reported in the RECS (2023). In
particular, the unit electricity price without on-site solar power generation is normalized to
g = 0.04 (in 2020 US dollars per BTU), while households without on-site solar generation
face an effective price that is 50% lower, ¢ = 0.5, reflecting the reduction in electricity
consumption from the grid due to on-site solar generation as described in Appendix Table
A.2. T calibrate the fraction of households that can adopt the clean technology, 6, to 0.5% in
the first transition period and linearly increase it to to 15% by the terminal steady state,
matching the observed residential solar adoption growth in the RECS (2023).

The flat labor income tax rate 7¢ is set to 19.53%, which corresponds to the revenue-neutral
flat tax rate that raises the same total tax revenue as the US federal progressive income
tax schedule in 2000, when applied to the model’s steady-state income distribution. The
progressive schedule is taken from the Internal Revenue Service’s (IRS) published 2000 tax
brackets are rates.® Differences between empirical effective tax rates reflect differences in tax
base definitions and sample coverage between the model and the data. For reference, the
Congressional Budget Office reports an average effective federal labor income tax rate of 12%
in 2000; the gap with the model’s 19.53% reflects differences in the tax base.® For comparison,
I also specify a progressive labor income tax schedule, denoted 7¢(y), that reproduces the US

federal marginal tax brackets in 2000 described in Appendix Table C.1: This progressive tax

4In a stationary environment with net interest rate r and a lower bound on labor income £, the natural
borrowing limit is given by a"NBF = — Yooey %, so that a“Bl is the present value of the minimum feasible
earnings path.

5See https://www.irs.gov/pub/irs-prior/i1040tt--2000.pdf.

6See https://www.cbo.gov/sites/default/files/108th-congress-2003-2004/reports/08-29-2
003AverageTaxRates.pdf.
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specification is used in policy experiments to evaluate the implications of progressivity in the
labor income tax system for adoption incentives and welfare. The subsidy rate for residential
solar panel adoption cost, 7, is set to 30%, reflecting the average federal investment tax credit
(ITC) rate for residential solar installations in the US between 2006 and 2025, as summarized
in the Lane (2025).

The initial installation cost py is set so that the model reproduces the largest ratio of median
system price to median household income in the observed sample, which is approximately
70%. T obtain the median gross system price of residential solar panel system installations in
2000 from NREL (2023), and the median annual household income in 2000 from the Census
(2024). The time series of this ratio between 2000 and 2022 is plotted in Figure 2. I set the

initial investment cost of solar panels as:

Po = Tp/y X Yo,

where 7 is the median annual household income in the initial steady state of the model. This

calibration anchors the affordability of adoption in observed 2000 conditions.

Estimated Parameters

The final set of baseline model parameters is estimated using reduced-form evidence
developed in section 2.3 and moments from household energy consumption data. The key
parameter of interest is the learning-by-doing elasticity, £, which governs how cumulative
adoption reduces subsequent installation costs. The elasticity is estimated using state-level IV
regressions of residential solar installation prices net of subsidies on local cumulative installed
capacity, drawing on data from NREL (2023) and DSIRE (2025) policy database. In addition,
I calculate an exogenous time decay parameter, A, to capture the declines in average costs
unrelated to local learning spillovers, such as global technology improvements, economies of
scale, and supply chain optimizations. Both £ and A are central to quantifying the dynamic
effects of subsidies and adoption spillovers in the model.

My baseline learning elasticity ¢ estimate comes from the state-level IV regression results
reported in column 2 of Table 3, which aligns with the model’s national cost curve while
mitigating policy and soft-cost endogeneity concerns. The implied elasticity of 0.1027 implies
a learning rate 1 — 27¢ = 0.0687, meaning that each doubling of cumulative installed capacity
leads to an 6.9% reduction in installation costs. Table 3 also provides results from regression
specifications without additional controls and firm-level estimates as robustness checks.

To discipline the residual cost trend, I estimate A from the full time series rather than
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only two endpoints. Specifically, I use the transformed learning-curve equation:

log(pm) + &1log(Zm—12) = a — Aym + €,

where m is months since the initial sample period and Z,,_15 is the one-year lagged cumulative
installed capacity in month m. The capacity-weighted pre-incentive national monthly price

series p, is constructed using the installation-level data from NREL (2023) as follows:

gross o

pgross _ Zzéb ppw 7,m wl,m

m - )
> ict,, Wim

where [, is the set of all residential solar panel installations in month m, ppwgr * is the
gross price per watt of installation ¢ in month m before incentives, and w; ,, is the size of
installation ¢ in watts. The prices are adjusted for inflation using the price deflator.
Together with the estimated elasticitiy &, I run an OLS regression of the left-hand side on
a constant and a linear time trend to estimate A. Specifically, I back out \,, rearranging the

estimated learning-curve equation to obtain:

log (pm“> ¢log (?’”’_i)
A = o

mpy — Mg

’

where m, and my are the first and last months in the sample period, respectively and p,,,
and p,,, are the corresponding capacity-weighted average national gross prices of residential
solar panel systems in those months. I convert the estimated monthly \,, to an annual A
by multiplying by 12 and obtain A = 0.0213, indicating an average annual cost increase of
2.5% unexplained by local learning-by-doing spillover effects. Figure 3 plots the fitted cost
curve implied by the estimated learning-by-doing elasticity & = 0.1027 and exogenous time
decay parameter A = 0.0213 against the actual average gross prices of residential solar panel
systems between 2000 and 2022.

The per household adoption cost follows a multiplicative index that combines learning-by-
doing and an exogenous time trend. Let ZP* > 0 denote the pre-adoption experience shifter.
I force the cumulative adoption stock Z; > 0 to be weakly increasing over time, with Zy =0
in the initial steady state. Adoption cost is left-continuous in the experience stock to avoid
simultaneity with current installations.

Define the effective experience stock

effy = 2P + Z,_4, effo = 2P + Z,,
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Figure 3: Fitted cost curve from estimated learning-by-doing parameters
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idx, = <2) exp( —Af),  ¢=min{t, 99}. (12)
effo

The cap t = min{t, 99} halts the pure time trend after 100 periods to prevent implausibly

low long-run costs. Numerically, I bound idx; away from zero by idx; +— max{idx;, 107'%} to

maintain positivity.

Given a baseline level p,, the adoption cost path is
Py = Po X idxy, (13)

so that p, falls with accumulated experience (learning) and with the exogenous trend. Let
dtareet denote the average annual decline in adoption costs over 2000-2020, measured from the
data, and let Ay be the average per period increment of the normalized cumulative adoption
stock over the same window. For fixed (£, \), I pin down ZP™ so that the model’s average
log change matches §*2¢°t. Under a small-step approximation with mean growth in effective

experience, this yields

Ay
eXp(((Starget _ )\)/5) . 17
and I set ZP™® = max{ZP® 107°} in implementation. In the baseline calibration I use
(&,)) = (0.1027, 0.0213) and the data moments (§*'&*, A ;) = (0.0242,0.032) from 2000-2020

to compute ZP™, which is then held fixed throughout the transition computations.

gpre  _

(14)

Finally, I parameterize the affine energy consumption function as follows:
e(c) =m +me,
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where e(c) is a household’s annual energy expenditure, ¢ is the annual consumption expendi-
ture, and 79 and 7; are parameters to be calibrated. I estimate, 1y and 7y, to fit the average
energy expenditure shares by net worth quintiles from the 2000 PSID to be replicated in the
model’s initial steady state.

Let z € Z denote the household state (e.g., assets and idiosyncratic labor productiv-
ity), and let ® be the associated invariant probability measure on (Z,B(Z2)). Let ¢(z) be
goods consumption and let e(c(z);n) denote energy services as a function of consumption,
parameterized by n = (19, 1:). The energy price ¢ is taken as exogenous and constant in the
baseline.

To map model implications to income quintiles, define an income mapping ¢ : Z — R,
and quantile cutoffs {;}?_y such that

@({Z:L(Z)Sﬁj}):%, j=0,1,...,5,

with kg = —o00 and k5 = co. The quintile sets are then
Q; = {z€Z: ki1 <uz) <kj}, j=1,...,5.

For each quintile j, the model-implied energy expenditure share is

| adetim) dee)
cq,() = = . (15)
| [acetzrin) + )] an(z)
Q

J

Let €, denote the empirical targets from the 2000 PSID. The calibration chooses 7 to

minimize the weighted sum of squared deviations:

* . ~ 2

7€ mind o, (0,00 —%a,) - (16)
]:

where w; = 1 by default (equal weighting); when available, I set w; = 1 //O%j using the

sampling variances from PSID (inverse-variance weighting).

On a finite grid {z,, }*_; with probabilities {®,,}*_, (so that >_ &,, = 1), (15) becomes

St Mzm € Qi} P gele(am)in)
Z%:l Hzm € Q) Py [qe(c(zm)Q n) + C(Zm)]

€Q; (77) -
All objects are evaluated at the stationary distribution ® used for calibration; along transitions
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one would replace ® with the relevant ®;. The values of n that minimize (16) are ny = 0.87
and nm; = 0.74.

4.2.2 Calibration for Pollution Damages

For transparency, I outline here how the pollution-damage parameters will be identified
and report the external data sources. These parameters are not used in the baseline calibration

or baseline policy experiments; they are activated only in Section 6.2.

Pollution Metric and Mapping

I measure X as population-weighted annual PMy 5 (pg/m?), and map dirty energy to

ambient pollution by
Xt = v |:/ e(ct(at, gt, St))(l — St) d(I)t
z

I set v to match the observed baseline PMs 5 in year 2000 using the baseline model’s implied
dirty-energy integral with pollution preferences shut down. The baseline PMs 5, denoted by
Xo, is obtained from the EPA (2024a) and is 13.52 ng/m? in 2000. I calibrate v as:

fZ G(CQ(GQ, go)) dq)07

v

where cg is the initial steady state consumption policy function, @, is the associated invariant
distribution, and Z is the state space at the initial steady state, stated in Appendix B.1. The
aggregate energy consumption at the initial steady state is 1.9835 in model consumption
units, so v = 13.52/1.9835 = 6.8163.

Damage Function in Utility

When activated, utility is

(e, X) =7 —1 max{0, X — X}
ue, X) = ——— — v
’ l1—o (c/c)w ’

where X is set to the health-based annual PM, 5 standard, equal to 9 ng/m?3, based on
the EPA’s (2024) National Ambient Air Quality Standards (NAAQS), and ¢ is the median
consumption in the baseline steady state.

Utility Scale of Pollution Concentration

I set the parameter v to equalize the model generated marginal rate of substitution

between consumption and pollution at the initial steady state to match an external estimate
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of marginal willingness to pay (MWTP) for a small reduction in PMs; at the baseline
pollution level. When X > X, consumption dollars a representative household would give up

for a unit drop in pollution, or the MRS between consumption and pollution, M RSx ., is:

ou(c, X)/0X
du(c, X)/dc”’
(¢/c)”

= pe YT,

MRSy, =

=V

)

Finally, I set v to equalize the model-implied M RSx . at the median household’s consumption
level, to the MWTP estimate:

ve () = MWTPx..

where ¢°? is the median consumption in the initial steady state, and MWT Py, is the

external MWTP estimate of a 1 ng/m? reduction in PMy 5 at the baseline pollution level.

Since baseline ¢ equals ¢°d, this simplifies to:

_ MWTPy,

B

[ calculate the MWTP per 1 pg/m?3 reduction in PMy 5 at the baseline pollution level using:
(i) a long-term all cause mortality PMy 5 concentration-response (C-R) of 7% per 10 pg/m?
from Vodonos, Awad, and Schwartz (2018), (ii) a value of statistical life (VSL) equal to 10
million (2000 dollars) from the EPA (2024c), and (iii) the 2000 mortality rate of 845.2 deaths
per 100,000 people from the CDC (2023). To calculate MWTP, I use the following formula:

MWTPx .= VSL x Baseline mortality rate x C-R per 1 pg/mg,

which yields a MWTP of approximately $591 (in 2000 dollars). Finally, I scale the MWTP
value with the ratio between the annual consumption expenditures in 2000 dollars of the
median income households from the BLS’s (2024) CES, which is $18,323, and the median
income household’s consumption expenditure at the initial model steady state, which is 1.4590,

to obtain a MWTP value in model consumption units. The ratio of median income household’s

expenditure in the data to expenditure in the model is approximately ﬁggg ~ 12,599, so the
final MWTP value in model consumption units is approximately MWT Px . = 0.0471. The

implied v is then v = 0.0471/(1.4590)! = 0.0323.
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Inequality Lever

The inequality level w amplifies pollution disutility when a household’s consumption is
lower than the reference consumption level ¢, and reduces it when consumption is higher.
I set w to match the ratio of pollution damages as a share of consumption for the bottom
versus top income distribution terciles. I partition the population into three groups based
on income terciles at the initial steady state without pollution damages, and compute the

model-implied pollution damage mass for each group:

max{0, Xo — X}
D w:/y - d®dy, =1,2,3,
L A R T

where T, is the income tercile set g at the initial steady state, and ¢y and ®, are the
associated consumption function and invariant distribution, respectively. Similarly, I define

the model-implied consumption mass for each group:
C, :/ co(a, 0)ddy, g=1,2,3.
Tg

Prior to calculating the pollution burden as a ratio of damages to consumption, I calculate
damage and consumption shares by group as:
Dy(w)

D(,) — c
KRS S BT

C

g
=— > 9=123.
Zg:l Cg

I then compute the pollution burden ratio for the bottom versus top income terciles as:

P E
T) = Up o) us

I use pollution and consumption shares in pollution burden calculation to abstract away from
units and maintain comparability with alternative calibrations.

I set w to match the pollution burden ratio that I calculate using estimates of US county-
level mortality damages from PMs 5 pollution and consumption expenditure data across
income terciles. To obtain the weighted average of mortality damages by income terciles, I
combine county-level mortality damage estimates from Dennin et al. (2024) with county-
level median income from Census (2024) and population data from Census (2025). I obtain

weighted average of consumption expenditure by income terciles from the BLS’s (2024) CES.
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I compute the empirical pollution burden ratio as follows:

$_ WAL

— =5 A
50§

where 1ZQD is the share of total mortality damages borne by income tercile g from Dennin
et al. (2024), and @\gc is the share of total consumption expenditure by income tercile g from
the 2014 CES. The empirical pollution burden ratio is approximately T = 5.83, indicating
that the bottom income tercile bears significantly a larger pollution burden than the top
income tercile. I then choose w to solve the minimization problem:
. = 2

w* = arg min (T(w) —7)".
The implied w is w = 2.84.

Having established the calibration of baseline and extended model parameters, the next
step is to describe how the model is solved and simulated. The computational procedure
involves characterizing the household decision problem under the calibrated environment,
solving for the stationary equilibrium of the initial and terminal economies, and then tracing
out the transition dynamics in response to policy interventions. In what follows, I outline
the numerical methods used to solve the model, describe the construction of both the initial
and long-run steady states, and detail how transitional paths are computed under baseline

subsidy scenario.

4.3 Computation

The model is solved numerically in three stages: (i) the initial steady state without the
clean technology, (ii) the terminal steady state with only the clean technology available,
and (iii) the transition path connecting the two. Each stage ensures consistency between
individual decisions, aggregate quantities, and market clearing conditions.

In the initial steady state, households do not have access to the clean technology, and the
economy settles into a stationary equilibrium given exogenous energy prices and fiscal policies.
In the terminal steady state, all households are equipped with the clean energy technology,
and the economy again reaches a stationary equilibrium under the new energy price regime.

The transition path is computed under perfect foresight. Given an initial guess for the
sequences of aggregates, the model is solved by backward induction on household value
functions and forward iteration on the distribution of households. Paths of aggregate capital

stock, lump-sum transfers, and the cumulative stock of adopters are updated iteratively until
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factor and goods markets clear at each point along the path. The equilibrium path thus
describes the joint evolution of prices, adoption, and welfare as the economy transitions to
the new steady state. Further computational details—including the recursive formulation,
iteration schemes, and convergence criteria—are provided in Appendix C.2. I report the key
steady-state moments and transition dynamics in Section 5.

The computation of the extended model with pollution preferences follows the same steps
as above, with the addition of the pollution preference block in utility and the pollution
mapping. As mentioned in section 3, incorporating pollution preferences does not alter
computation significantly, as pollution is a deterministic function of aggregate dirty energy
consumption. Thus, the number of state variables remains unchanged, and the household
problem retains its recursive structure. The main difference is that the household value
functions and policy functions now depend on the pollution level, which in turn depends on
the aggregate dirty energy consumption. This adds an additional layer of general equilibrium
feedback, as households’ adoption decisions affect pollution, which affects utility, which in
turn affects adoption incentives. The computational algorithm is adjusted to account for this
feedback loop, ensuring that the pollution level is consistent with the aggregate dirty energy
consumption at each point in time. To implement this extension, I add pollution level as
a fourth variable to guess and update along the transition path, in addition to aggregate
capital stock, lump-sum transfers, and cumulative adopters. In Section 6.2, I report the
results of the extended model, re-solve the steady states and transition paths, and revisit
policy experiments.

Since the objective of this quantitative analysis is to understand the distributional and
welfare implications of the residential solar transition, I compute a range of household-
level welfare measures along the transition path. These include the consumption equivalent
variation (EV), which measures the percentage change in initial consumption that would
make a household indifferent between the baseline and counterfactual scenarios, consumption
compensating variation (CV), which measures the percentage change in final consumption
that would make a household indifferent between the baseline and counterfactual scenarios,
and the lifetime utility change, which measures the absolute change in lifetime utility from
the baseline to counterfactual scenarios.

Let cP*¢ and ¢! denote the consumption paths under the baseline and counterfactual
scenarios, respectively, for ¢t = 1,...,T. Formally, EV and CV, denoted by A*V and AV, and
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lifetime utility change, denoted by AV, are defined as follows:

- . ;
EV: E ) BU(Q+XY) =) | =B |>_BU(E"|,
L t=1 t=1 i
[T T 7]
CV: Ee| ) BU(™)| =E > AU+ X)),
Lt=1 t=1 J
T T
AV: AV =E > BU(E) | —E | ﬁtU(c,?ase)] .
t=1 t=1

These welfare measures are computed for each household along the transition path, allowing
for a detailed analysis of how different households are affected by the transition and the
associated policies. In my analysis, I only report EV as the main welfare metric, as it provides
a clear interpretation in terms of consumption changes. The computation of the EV metric is
described in detail in Appendix C.3.

In sum, the calibration aligns the model with observed macro aggregates, household energy
data, and empirically estimated cost dynamics. The computational procedure then traces
out equilibrium transitions consistent with individual optimization and general equilibrium
feedbacks. This foundation enables the next section’s analysis of how subsidy design and

financing shape adoption, inequality, and welfare in the clean energy transition.

5 Quantitative Results

This section presents the quantitative results of the model. I begin by evaluating how
well the initial stationary equilibrium reproduces salient features of the joint income-wealth
distribution observed in the data, validating the model as a credible tool for policy analysis. I
then introduce a uniform adoption subsidy for clean energy technologies and trace its effects
on adoption incentives, prices, and welfare across heterogeneous households. These baseline
results provide a benchmark for understanding the equity and efficiency consequences of

adoption subsidies before introducing pollution externalities.

5.1 Model Fit

Before turning to the welfare effects of subsidies, I assess the model’s fit to the US wealth
distribution in 2000 using PSID data. Table 5 compares the model’s stationary equilibrium
to the data across net-worth quintiles for income, expenditure, and wealth shares, as well as

the ratio of energy expenditure to total expenditure.
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Table 5: Selected variables across the net worth quintiles from the data vs the initial model
stationary equilibrium

% Share of % Ratio
NW Quintile Income Expenditure Wealth Energy-Expend
Data Model Data Model Data Model Data  Model

Q1 10.9 13.3 12.6 13.8 -0.9 0.3 5.9 6.2
Q2 12.2 18.2 15.4 18.4 1.2 6.8 6.0 5.6
Q3 17.8 17.4 19.2 17.4 5.2 12.6 5.8 5.1
Q4 23.1 22.6 23.2 22.4 14.8 25.6 5.1 4.8
Q5 35.9 285 296 281 79.6  54.7 4.5 4.4

Notes: Data is from the 2000 PSID.

The model reproduces the joint distribution of income, expenditure, and wealth reasonably
well. It slightly overpredicts the income and expenditure shares of the lower quintiles and
underpredicts those of the top quintile, but the discrepancies are modest. As in many
heterogeneous agent models, the wealth concentration of the top quintile is somewhat
underrepresented; this could be improved with heterogeneity in discount factors or returns.
The model matches energy expenditure shares across the net-worth distribution closely,

indicating that it captures observed consumption patterns well.

5.2 Baseline Results

To evaluate the welfare implications of the clean-energy transition, I compute welfare
changes for each household along the transition path. All results in this section abstract
from pollution disutility to isolate the macroeconomic and adoption channels. Appendix C.3

provides definitions of the welfare metrics used.

Aggregate Dynamics

Figure 4 plots aggregate dynamics under a uniform labor income tax with learning-by-doing
(LBD) in adoption costs, comparing scenarios with (blue) and without (orange) adoption
subsidies. The panels show: (a) cumulative adopters, (b) the technology-cost-to-median-income
ratio, (c) the capital-labor ratio, and (d) lump-sum transfers.

The capital-labor ratio at the terminal steady state is 12% lower than in the initial steady
state capital-labor ratio, driven by reduced energy use due to efficiency gains. This implies a
4% fall in the real wage and a 24% rise in the real interest rate. The 50% decline in energy
prices increases consumption by 4.9% for the poorest and 1.6% for the richest households.
Although aggregate capital and output fall, aggregate consumption rises because energy

becomes much cheaper.
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The transition dynamics are non-monotonic and differ sharply with subsidies. Without
subsidies, the capital-labor ratio initially rises as households save to finance adoption. This
raises wages and lowers interest rates, benefiting labor-reliant households and hurting savers.
As adoption spreads and energy costs fall, the capital-labor ratio eventually declines, reversing
those short-run price effects.

The aggregate path of adoption has an S-shape, consistent with diffusion of innovations
theory discussed by Rogers (2003). Adoption starts slowly, as only high-income, high-wealth
households can afford the upfront costs. As adoption costs fall through learning-by-doing,
more households find it optimal to adopt, accelerating the process. Eventually, adoption
saturates as most households that can benefit have already adopted, and the stock of new
adopters tapers off.

Subsidies alter this pattern by lowering adoption costs and reducing the need to save
beforehand. Early adoption and higher savings among adopters raise the capital-labor ratio
more strongly and for longer, about 15 years. Higher wages from this expansion benefit all
households, while the lower interest rate hurts the asset-rich but helps borrowers. Although
higher wages increase tax revenues, financing the subsidies reduces net transfers substantially,
hurting especially the poor, who depend more on transfers. Overall, the transition exhibits
rich, non-monotonic dynamics in wages, interest rates, and transfers, all of which shape

heterogeneous welfare outcomes.

Aggregate Welfare Effects

First, I evaluate the welfare effects of the technology transition in the absence of any
policy change. This counterfactual compares an economy that remains permanently in its
initial steady state to one that undergoes the clean-technology diffusion driven solely by LBD
and exogenous cost decline, without subsidies. Figure 5 shows the equivalent-variation (EV)
welfare impacts of this technology transition across the joint income-wealth distribution. The
welfare effects of the technology transition are monotonically increasing in wealth: wealthier
households gain more, while the less wealthy households gain less, and even some experience
small welfare losses. The distributional pattern arises because without subsidies, aggregate
savings decline sharply during the medium term of the transition and recover only slowly.
This depresses wages and raises interest rates, which hurts labor-reliant poor households and
benefits capital-reliant rich households. Moreover, the fall in wages also reduces government
tax revenues, leading to lower transfers that disproportionately affect the poor.

Figure 6 shows the EV welfare impacts of subsidizing clean energy technology adoption
across the joint income-wealth distribution. On average, most groups gain, but welfare gains

rise with income and wealth: only the poorest households experience losses. Middle-income
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Figure 4: Aggregate dynamics under baseline policy with LBD, with and without adoption
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groups see the largest average gains.

While Figures 5-6 illustrate the distributional patterns of welfare changes, it is also useful
to compare their aggregate magnitudes. In the absence of any policy, the clean-technology
transition alone raises aggregate consumption-equivalent welfare by 0.3 percent relative to
an economy that remains in the initial steady state. Introducing the adoption subsidy on
top of this transition yields an additional 0.05 percent gain. Thus, the subsidy accounts
for roughly one-sixth of the total welfare improvement associated with the clean-energy
transition. Although smaller in aggregate magnitude, the policy plays a pivotal role in
broadening participation in the transition: it mitigates welfare losses among lower-wealth
households and shifts part of the gains from high-wealth to middle-income groups.

Table 6 presents a detailed decomposition of the welfare changes induced by adoption
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Figure 5: Welfare impact of transitioning to clean energy technology across the income-wealth
distribution, measured by equivalent variation (EV) as a percentage of initial consumption.
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Figure 6: Welfare impact of subsidizing solar panel adoption cost across the income-wealth
distribution, measured by equivalent variation (EV) as a percentage of initial consumption.
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subsidies, breaking down the contributions from direct subsidies, LBD-induced cost reductions,

price effects, and fiscal transfer effects. Before I discuss the welfare decomposition, I first
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highlight the total welfare effects and their distributional patterns across the wealth terciles.

Panel A of Table 6 summarizes the EV metric for each welfare changing component of
the subsidy. I provide the definitions of these welfare metrics in Appendix C.3. The last row
of Panel A of Table 6 summarizes the aggregate welfare change across all households. On
average, I find that the subsidy leads to a small welfare gain across all households, with an
average EV of 0.05%.

I define a household as strictly benefiting, i.e., a winner from the subsidy, if its EV is
strictly positive. The final column of Panel A of Table 6 reports the share of all households
that benefit from each welfare change induced by the subsidy. Overall, I find that a strong
majority of 93.9% of households experience net welfare gains from subsidizing the transition,
while the remaining 6.1% experience losses or are indifferent relative to the baseline. However,
the distribution of winners is unequal.

Panel B of Table 6 breaks down the share of winners by asset terciles. The bottom row
of Panel B shows the within asset tercile winner shares. The results reveal unequal support.
Although the majority of each wealth tercile wins from the subsidies, the strict support
decreases with wealth. The within-tercile shares of strict winners are 84.8%, 98.1%, and
99.9%, for bottom, middle, and top wealth terciles respectively. This pattern indicates that
although the subsidies enhance aggregate welfare, low-wealth households are not unanimously
benefiting and may be disproportionately burdened by the costs of financing the subsidy,
while high-wealth households are strictly better off.

Welfare Decomposition

To understand the distributional mechanisms underlying these aggregate welfare effects,
I decompose the total welfare change into four components: (i) the direct subsidy effect,
which captures the immediate benefit to adopters from the subsidy; (ii) the LBD-induced
cost change effect, which reflects how the subsidy accelerates adoption and thereby reduces
future technology costs for all households; (iii) the price effect, which accounts for changes in
equilibrium prices (wages, interest rates, energy prices) induced by the subsidy; and (iv) the
transfer effect, which captures changes in fiscal transfers due to altered government budget
constraints. The first two components represent the direct benefits of the subsidy, while the
latter two capture general equilibrium feedback effects. Table 6 presents the decomposition by
these four components for the aggregate economy in Panel A and by asset terciles in Panel B.

The direct subsidy and LBD cost effects are positive for essentially all households. The
subsidy lowers the upfront cost of adoption directly, while accelerated adoption generates
spillovers that reduce future costs. On average, these two channels raise welfare by EV gains

of 0.24% and 0.004%, respectively. The latter is small in magnitude, consistent with the fact
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Table 6: Decomposition of welfare effects and distribution of winners by asset tercile

Panel A. Aggregate Welfare Decomposition

Component Aveg. EV (%) Winner (%)
Direct subsidy +0.24 100.0
LBD-induced cost change +-0.00 99.5
Price effect —0.02 39.3
Transfer effect —0.17 0.0
Total +0.05 93.9

Panel B. Winner Shares by Asset Tercile (%)

Bottom Middle Top Aggregate
Direct subsidy 100.0 100.0 100.0 100.0
LBD-induced cost change 100.0 100.0 98.3 99.5
Price effect 92.9 18.2 0.0 39.3
Transfer effect 0.0 0.0 0.0 0.0
Total 84.8 98.1 99.9 93.9

Notes: Winner share is the fraction of households with strictly positive
consumption-equivalent variation (EV). Tercile population shares are [0.360,
0.323, 0.317].

that LBD affects future adopters more than current ones. Panel B shows that these gains are
broadly shared across the asset distribution: all terciles weakly benefit from both the direct
subsidy effect and the LBD cost effect.”

The price effect introduces heterogeneity. On average, it reduces welfare by an EV change
of —0.02% and strictly benefits only 39.3% of households. Panel B shows that this channel is
sharply distributional: the winner share is 92.9% in the bottom asset tercile, 18.2% in the
middle tercile, and 0.0% in the top tercile.

This pattern reflects how factor prices move during the transition. As shown in Figure 4,
subsidies accelerate adoption and raise the capital-labor ratio more sharply than in the
no-subsidy counterfactual. In the short run this pushes up wages and lowers the interest rate.
Low-asset households rely primarily on labor income and therefore benefit from higher wages.
High-asset households rely more on capital income and are hurt by lower returns. Thus, the
price effect is progressive in incidence: it favors the asset-poor and penalizes the asset-rich.

The transfer effect is negative for everyone. Because the subsidy is financed out of the
same tax base, it reduces lump-sum transfers even though rising wages increase tax revenue.
On average, this channel lowers welfare by an EV change of —0.17%, and no households

gain from it (winner share 0%). The distributional bite of this channel is most severe for the

“For instance, the top asset tercile has a 98.3% winner share from the LBD channel. Winner share is
defined as the fraction of households with strictly positive welfare gains; the remaining 1.7 are indifferent, not
worse off.
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asset-poor, who rely more on transfers for consumption. This is visible in Panel B: despite
benefiting from the price effect, low-asset households still face weaker overall support once
reduced transfers are taken into account.

Aggregating all four channels, the total welfare effect of the subsidy is positive on average.
The direct subsidy effect is the dominant contributor to this average gain and offsets the
strong negative effect coming from reduced transfers. Learning spillovers (the LBD cost effect)
are present but quantitatively modest at baseline. At the same time, the fiscal incidence of
the policy is not neutral: low-wealth households bear a relatively larger share of the financing
burden through reduced transfers, while high-wealth households are more exposed to the fall
in interest rates.

In summary, the subsidy delivers broad gains through lower adoption costs and, to a
lesser extent, through learning spillovers. But those gains are partially offset by two general
equilibrium forces: a transfer channel that hurts everyone (especially the asset-poor who
depend on transfers) and a price channel that hurts the asset-rich (through lower capital
returns). The net result is that the subsidy enjoys majority support, but the burden of
financing it is regressive in the sense that low-wealth households pay more, relative to their
resources, via foregone transfers.

Importantly, these results come from a simplified baseline environment: subsidies are
refundable, labor income taxation is flat, and pollution externalities are turned off. In the
next section, I relax these assumptions—introducing progressive taxation, nonrefundability,
and pollution damages—and examine how each changes both aggregate welfare and the

distribution of winners and losers.

6 Sensitivity Analysis

The baseline results evaluated the welfare effects of subsidizing clean energy adoption
under a simplified policy: a uniform labor income tax financing a permanent, refundable
adoption subsidy. Real-world policies are more complex. The US tax system is progressive:
the federal residential solar investment tax credit has historically been nonrefundable and
temporary and environmental policy is motivated in part by pollution damages, which the
baseline abstracted from.

This section extends the analysis along two dimensions. First, Section 6.1 studies alternative
financing and subsidy designs that mirror US policy practice. Second, Section 6.2 incorporates
pollution damages into utility, allowing me to quantify gains from improved air quality and

to revisit the distributional incidence of subsidies.
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6.1 Alternative Financing and Subsidy Designs

To move beyond the benchmark subsidy, I evaluate how alternative policy designs affect
both the efficiency and equity of the energy transition. These policies are motivated by
real-world policy designs debated or implemented in the US. I consider three alternative
policies, each building on the previous one, to isolate the effects of specific design features: (i)
a progressive labor income tax financing mechanism, (ii) a nonrefundable adoption subsidy
under progressive financing, (iii) an income-capped nonrefundable subsidy. These policies
differ along two dimensions: how the policy is financed and who is eligible for the subsidy. I will
decompose welfare effects and winner shares for each policy as in section 5 and evaluate which
designs best balance efficiency and equity. Importantly, these three experiments (progressive,
nonrefundable, and income-capped) are all solved in the same progressive-tax environment,
so their initial and terminal steady states are comparable to one another, but not to the
benchmark with a uniform tax. In this progressive financing environment, the policy-free
energy transition (no subsidy) also raises aggregate welfare by about 0.3%, so the marginal
subsidy effects reported below can be read against a transition of a similar order of magnitude

as in the benchmark.

Experiment 1: Progressive Labor Income Tax Financing

I first repeat the baseline subsidy experiment, but replace the uniform labor income
tax with a progressive labor income tax schedule. Table 7 presents the detailed welfare
decomposition for this experiment, analogous to Table 6 for the benchmark. Note that both
the initial and terminal steady states differ under progressive taxation, even before introducing
subsidies: effective tax rates shift savings, adoption timing, and thus the baseline against
which subsidies are evaluated.

Under progressive financing, subsidizing adoption still raises aggregate welfare, with an
average EV gain of 0.05%, the same as under uniform financing. However, two changes emerge.
First, the aggregate winner share falls from 93.9% under uniform financing to 83.3%. Second,
the decline in support is concentrated among low-wealth households: within-tercile winner
shares fall most in the bottom tercile.

To understand this, I compare adoption dynamics in Figure 7. Panels (a)—(b) show that
aggregate adoption without subsidies is slower under progressive financing. Higher-income
(and typically higher-wealth) households face higher effective tax rates, have less liquidity,
and adopt more slowly. Lower-income households face lower effective tax rates, but they are
not the early adopters in any case. As a result, early aggregate adoption is delayed.

When subsidies are introduced, adoption accelerates under both financing schemes, and the

aggregate adoption paths converge. But the composition differs. Under progressive financing,
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Table 7: Decomposition of experiment 1 welfare changes and distribution of winners by asset
tercile

Panel A. Aggregate Welfare Decomposition

Component Avg. EV (%) Winner (%)
Direct subsidy +0.23 100.0
LBD-induced cost change +0.00 99.8
Price effect —0.02 32.3
Transfer effect —0.17 0.0
Total +0.05 83.3
Panel B. Winner Shares by Asset Tercile (%)

Bottom Middle Top Aggregate
Direct subsidy 100.0 100.0 100.0 100.0
LBD-induced cost change 100.0 100.0 99.2 99.8
Price effect 87.9 8.4 0.0 32.3
Transfer effect 0.0 0.0 0.0 0.0
Total 55.8 94.4 100.0 83.3

Notes: Winner share is the fraction of households with positive consumption-
equivalent variation (EV). Tercile population shares are [0.335, 0.343, 0.322].

subsidies disproportionately speed up adoption among middle- and high-wealth households,
who were previously slowed by higher tax burdens. Figure 7, panels (¢)—(d), shows that
adoption across wealth terciles becomes more similar once subsidies are present.

These adoption patterns map into different general equilibrium effects. Figure 8 compares
aggregate savings (through the capital-labor ratio) and transfers with and without subsidies
under progressive financing.

Relative to uniform financing (Figure 4), progressive financing produces a smaller short-run
increase in the capital-labor ratio once subsidies are introduced (panel (a)). The intuition is
that under progressive taxation, early adopters face higher marginal tax rates; after adopting,
they save less than they would under uniform financing. The muted rise in the capital-labor
ratio means wages rise by less in the short run. Since low-wealth households rely more on
labor income, they benefit less. This weaker wage response is the first reason support falls
among the bottom tercile.

At the same time, net lump-sum transfers fall more under progressive financing (panel
(b)). Even though wages rise somewhat and generate tax revenue, financing the subsidy
consumes a larger share of that revenue, so the net-of-subsidy transfer drops more than under
uniform financing. Because low-wealth households depend more on lump-sum transfers, they
are hit harder by this reduction.

Comparing Tables 6 and 7, and Figures 4 and 8, the mechanism is clear: progressive
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Figure 7: Aggregate and across asset tercile adopter stock, benchmark and experiment 1.
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financing weakens the wage boost and deepens the transfer cut. Both disproportionately

harm low-wealth households, reducing their winner share. The LBD-induced cost channel

remains small in either case.

Experiment 2: Nonrefundable Subsidy under Progressive Financing

I next consider a nonrefundable subsidy under progressive financing, mirroring the his-
torical US federal solar ITC. Under a nonrefundable design, households can only claim the
subsidy against tax liability: low-income households with little or no tax liability receive no
benefit. This design aims to limit fiscal cost (and thus transfer reductions) but may exclude
exactly the liquidity-constrained households that policy is often meant to help.

Table 8 shows that aggregate welfare still improves: the average EV gain remains 0.05%,

similar to experiment 1. Direct subsidy effects and LBD-induced cost effects remain positive
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Figure 8: Aggregate dynamics under progressive financing policy with LBD, with and
without adoption subsidies, experiment 1.
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for essentially all households, although the magnitude of the direct subsidy channel falls
slightly because some low-income households are no longer eligible. The LBD effect remains
small.

The average price effect is still negative, but weaker than in experiment 1, and the share
of households who benefit from the price channel falls from 32.3% to 23%. The transfer effect
becomes slightly less negative on average: making the subsidy nonrefundable does reduce the
fiscal pressure somewhat. But transfer effects are still strictly nonpositive for all households.

The distributional pattern shifts. The aggregate winner share falls further, from 83.3% in
experiment 1 to 78.1%. Almost all of this decline comes from the bottom asset tercile: their
within-tercile winner share drops from 55.8% to 44.4%. In other words, limiting refundability
mainly withdraws support from the poor.

Figure 9 compares adoption under refundable (experiment 1) and nonrefundable (experi-
ment 2) subsidies. Panels (a)-(b) show that aggregate adoption paths are nearly identical, so
refundability does not change overall diffusion much. Panels (¢)—(d) show why distributional
incidence changes: with a nonrefundable subsidy, early adoption slows among high-wealth
households and accelerates slightly among low- and middle-wealth households. Eligibility
becomes state-contingent: high-wealth households delay if they are temporarily in a low-
income state (and therefore can’t claim the full credit), while some liquidity-constrained
households adopt earlier if they happen to draw a temporarily high-income state and thus
qualify. Because income follows a persistent AR(1) process, these timing frictions matter in
the short- to medium-run.

These shifts in adoption timing feed into savings, prices, and transfers (Figure 10). With a
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Table 8: Decomposition of experiment 2 welfare changes and distribution of winners by asset
tercile

Panel A. Aggregate Welfare Decomposition

Component Avg. EV (%) Winner (%)
Direct subsidy +0.21 100.0
LBD-induced cost change +0.00 100.0
Price effect —0.00 23.0
Transfer effect —0.16 0.0
Total +0.05 78.1

Panel B. Winner Shares by Asset Tercile (%)

Bottom Middle Top Aggregate
Direct subsidy 100.0 100.0 100.0 100.0
LBD-induced cost change 100.0 100.0 100.0 100.0
Price effect 64.8 3.7 0.0 23.0
Transfer effect 0.0 0.0 0.0 0.0
Total 44.4 90.6 99.8 78.1

Notes: Winner share is the fraction of households with strictly positive
consumption-equivalent variation (EV). Tercile population shares are [0.335,
0.343, 0.322].

nonrefundable subsidy, aggregate savings barely rise in the short run relative to the no-subsidy
case (panel (a)). That weaker savings response implies a smaller short-run increase in the
capital-labor ratio and hence a smaller wage boost. Lower wage gains reduce the labor-income
benefit to low-wealth households, which helps explain their weaker support.

In the medium run, the capital-labor ratio falls more under the nonrefundable subsidy
than under the refundable subsidy. As more middle- and high-wealth households adopt, they
finance adoption out of savings, reducing asset accumulation. The resulting decline in capital
lowers wages and raises interest rates. That shift hurts low-wealth households (who rely on
wages) and benefits high-wealth households (who rely on capital income).

Panel (b) shows that net-of-subsidy lump-sum transfers fall less under nonrefundable
subsidies than under refundable subsidies, because fiscal costs are lower. But that improved
transfer channel is not enough to offset the weaker wage gains for the poor. Overall, nonre-
fundability slightly reduces aggregate welfare gains but substantially reduces support among
low-wealth households.

In short: making the subsidy nonrefundable modestly alleviates fiscal pressure, but further
erodes support among low-wealth households by excluding many of them from eligibility and
by muting short-run wage gains. Incorporating permanent productivity shocks could change

this result, and is left for future work.
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Figure 9: Aggregate and across asset tercile adopter stock, experiment 1 and experiment 2.
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Experiment 3: Income-Capped Subsidy under Progressive Financing

Finally, I analyze income-capped subsidies that restrict eligibility to middle- and lower-
income households. I consider refundable subsidies but only available to households with
income below a certain threshold. Income-capped subsidies aim to target adoption support
toward liquidity-constrained households, while avoiding fiscal costs from subsidizing wealthier
households who may adopt regardless of subsidies.

Such income-capped subsidies have been briefly implemented in the US for clean vehicle
purchases between 2023 and 2025 (see US Department of Energy 2024 and IRS (2025)). The
Inflation Reduction Act (IRA) established, starting in 2023, modified adjusted gross income
(AGI) limits for clean vehicle credits, with different caps for new and used electric vehicles.
DOE (2024) summarizes that to qualify for a credit, a filer’'s modified AGI must be below a
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Figure 10: Aggregate dynamics under progressive financing policy with LBD, with and
without nonrefundable adoption subsidies, experiment 2.
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limit based on their tax filing status, using either their income from the year they purchased
the vehicle or the year prior, whichever is lower. This design targets adoption support toward
liquidity-constrained households, but it may slow aggregate adoption if wealthier households
are the primary drivers of LBD spillovers. Allcott et al. (2024) argues that the IRA’s income
caps were generous enough that the majority of new vehicle buyers still qualified for the
credit. Since the passage of the One Big Beautiful Bill, clean vehicle credits were eliminated
starting on September 30, 2025, regardless of income, according to IRS (2025).

Table 9 reports the results. This is the only policy among the three variants that reduces
aggregate welfare: the average EV change is —0.09%. Only 2.2% of households strictly benefit.
The direct subsidy and LBD channels remain positive, but the direct subsidy channel shrinks
sharply because all households at or above the cap (here set to median income) are ineligible.
The average price effect turns positive — general equilibrium prices help on net — but the
transfer effect remains strictly negative, and still large.

Figure 11 shows why. Panels (a)—(b) reveal that aggregate adoption slows sharply under
income-capped subsidies. In fact, panel (b) shows that with income caps, subsidies fail to raise
aggregate adoption above the no-subsidy path. Panels (¢)—(d) show that the cap prevents
the “early adopter push” among middle- and high-wealth households that existed under
uniform access. Low-wealth households adopt slightly faster in the very short run, but by
the medium run their adoption pace falls back to the no-subsidy level, while high-wealth
households eventually speed up.

Figure 12 shows the resulting macro dynamics. In the short run, aggregate savings and

the capital-labor ratio barely move relative to the no-subsidy path (panel (a)), because the
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Table 9: Decomposition of experiment 3 welfare changes and distribution of winners by asset
tercile

Panel A. Aggregate Welfare Decomposition

Component Avg. EV (%) Winner (%)
Direct subsidy +0.04 100.0
LBD-induced cost change +0.00 100.0
Price effect +0.02 77.0
Transfer effect —0.15 0.0
Total —0.09 2.2

Panel B. Winner Shares by Asset Tercile (%)

Bottom Middle Top Aggregate
Direct subsidy 100.0 100.0 100.0 100.0
LBD-induced cost change 100.0 100.0 99.9 100.0
Price effect 33.6 97.9 100.0 77.0
Transfer effect 0.0 0.0 0.0 0.0
Total 0.0 0.0 6.9 2.2

Notes: Winner share is the fraction of households with strictly positive
consumption-equivalent variation (EV). Tercile population masses are [0.335,
0.343, 0.322].

composition of adopters does not shift much. In the medium run, however, aggregate savings
fall sharply. Two forces drive this. First, because the cap slows aggregate adoption, the policy
fails to accelerate LBD. Costs stay high, so per-household subsidy payouts remain large
whenever the subsidy is actually claimed. Financing those payouts causes net-of-subsidy
lump-sum transfers to fall even more than under the uncapped subsidy (panel (b)), despite
the tighter eligibility. Second, the larger drop in transfers depresses savings, which lowers
the capital-labor ratio and wages in the medium run. Lower wages cut labor income for low-
and middle-wealth households and slow their adoption even further. At the same time, the
lower capital-labor ratio raises interest rates, benefiting high-wealth households, who rely on
capital income and subsequently speed up adoption.

This explains the sign flip in the average price effect: higher interest rates now benefit
the asset-rich enough to outweigh wage losses in the aggregate, even though wage-dependent
households are worse off. But the transfer effect remains strongly negative and is borne by
everyone.

Figure 13 shows the welfare impact across the income-wealth distribution. Almost all
groups experience welfare losses, with the largest losses in the middle of the distribution.
Middle-income, middle-wealth households typically do not qualify for the subsidy but still

face adverse general equilibrium price and transfer effects. Low-wealth households lose less
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Figure 11: Aggregate and across asset tercile adopter stock, experiment 1 and experiment 3.
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because they are more likely to qualify directly. High-wealth households also lose less because
higher interest rates partially offset the transfer losses. The policy is therefore both inefficient

(negative aggregate EV) and distributionally perverse (large welfare losses concentrated in
the middle).

6.2 Extension: Activating Pollution Damages and Inequality

The previous experiments abstracted from pollution damages, even though environmental
damages — and their unequal incidence — are core justifications for clean energy policy. I now
activate the pollution term in utility (equation (11)), which penalizes high ambient pollution
more for lower-consumption households, consistent with evidence on environmental inequality
Banzhaf, Ma, and Timmins (2019) and Sergi et al. (2020).
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Figure 12: Aggregate dynamics under progressive financing policy with LBD, with and
without income-capped adoption subsidies, experiment 3.
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Figure 13: Welfare impact of subsidizing solar panel adoption cost across the income-wealth
distribution, experiment 3
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I introduce pollution damages into experiment 2 (nonrefundable subsidy under progressive
financing) and recompute welfare. The aggregate EV change from transitioning to clean
energy without subsidies is now 12%, reflecting the large benefits from reduced pollution.
Because pollution now enters utility directly, this 12% transition gain is not quantitatively

comparable to the 0.3% transition gains in the tax experiments: it reflects the environmental
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Table 10: Decomposition of welfare changes and distribution of winners by asset tercile when
pollution damages are incorporated.

Panel A. Aggregate Welfare Decomposition

Component Avg. EV (%) Winner (%)
Direct subsidy +0.20 100.0
LBD-induced cost change +0.00 100.0
Price effect —0.01 56.7
Pollution effect +2.15 100.0
Transfer effect —0.32 0.0
Total +2.02 100.0

Panel B. Winner Shares by Asset Tercile (%)

Bottom Middle Top Aggregate
Direct subsidy 100.0 100.0 100.0 100.0
LBD-induced cost change 100.0 100.0 100.0 100.0
Price effect 0.1 75.1 100.0 56.7
Pollution effect 100.0 100.0 100.0 100.0
Transfer effect 0.0 0.0 0.0 0.0
Total 100.0 100.0 100.0 100.0

Notes: Winner share is the fraction of households with strictly positive
consumption-equivalent variation (EV). Tercile population shares are [0.355,
0.312, 0.333].

externality rather than just technology diffusion. I then evaluate the marginal welfare effects of
subsidizing adoption in this setting. Table 10 summarizes the results. Accounting for pollution
damages dramatically raises the aggregate welfare gain from subsidizing adoption: the average
EV increases from 0.05% in experiment 2 to 2.02%, and the winner share rises from 78.1% to
100%. Every household is strictly better off once pollution damages are internalized.

Figure 14 compares aggregate adoption with and without pollution damages (no-subsidy
and subsidy cases). When pollution damages are active, baseline (no-subsidy) adoption is
slower. The reason is precautionary: pollution enters utility in a way that increases effective
risk aversion and prudence for X > X, especially at low consumption levels.

Differentiating equation (11) gives

uc(e, X) = 7+ v,w, (X = X), e, @,
Uee(c, X) = —0, ¢ —p w(w+1), (X — X), &, @),
Ueee(€, X) = 0(0 + 1), e Ly ww+1)(w+2),(X - X), &, o~ w+3)

For X > X, both |ue| and .. increase. Thus risk aversion A(c; X) = —./u. and prudence

P(c; X) = —teee/Uee Tise with pollution. Pollution therefore increases the marginal value of
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Figure 14: Aggregate adopter stock, experiment 2 and extension with pollution damages.
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Figure 15: Aggregate dynamics under progressive financing policy with LBD, with and
without nonrefundable adoption subsidies, for pollution extension of experiment 2.
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liquid wealth. Households save more for self-insurance, and they become more reluctant to
give up liquidity for an irreversible investment like solar.

Formally, let V¥ (a, ¢,0) and V4(a,£,0) be the value functions from not adopting and
adopting. Adoption requires paying p; up front, reducing liquid assets from a to a — p;. The
adoption surplus is:

Aa, l;p) = VAa — pg, £,0) — VV(a, ¢,0).

A second-order expansion around a gives:

VA(a —p,0,0) =~ VA(a,E, 0) — VaA(a,é, 0)p: + lVA(OL,K, O)pf

2 Vaa

o4



thus, adopting entails an additional second-order welfare loss from giving up liquid wealth,
$|Va(a, €, 0)|p;. Because V4 < 0, this term measures the curvature-induced penalty from
converting liquid assets into an illiquid investment. The curvature |V,2] is tied to |u..| through
the Euler condition, so when pollution damages are active and w > 1, the value function
becomes more concave, and the shadow value of liquidity rises. Households, therefore, face a
more substantial option value of waiting: they postpone adoption until wealth is sufficiently
high or technology costs have declined further.

Let a*(¢; p;) denote the adoption threshold such that A(a*, ¢; p;) = 0. Because the adoption
surplus falls with greater curvature, da*(¢; p;)/0|VA| > 0, pollution raises the wealth level
required for adoption and slows the extensive-margin response in the early transition, as
seen in Figure 14. This delay feeds back through LBD, flattening cost reductions and further
slowing aggregate adoption.

The same higher curvature that discourages early adoption also alters aggregate saving
behavior. In the pollution extension, households are more prudent in a steady state and
ultimately accumulate more wealth, but during the transition, they expect pollution to decline
as adoption expands. Because Ju./0X > 0, an expected improvement E;[X;,1] < X; lowers

the expected future marginal utility on the right-hand side of the Euler equation,

uc(ce, Xy) = B(1+ 1e41) Eiluc(crr, Xiga)]-

To restore equality, households increase current consumption relative to ¢;11, temporarily
reducing saving. As a result, aggregate capital falls at the start of the transition (Figure 15,
panel (a)), before recovering as pollution stabilizes and the precautionary motive dominates.
This pattern contrasts with the benchmark without pollution damages (Figure 10, panel
(a)), where capital initially rises because agents expect higher future returns from adoption.
Hence, pollution damages raise long-run prudence and steady-state saving, but in the short
run, the anticipation of cleaner future conditions induces a front-loading of consumption that
depresses capital and slows the overall diffusion of adoption.

The stronger curvature of preferences under pollution damages also amplifies the re-
sponsiveness of adoption to subsidies and the resulting welfare gains. Figure 14 shows that
while overall adoption eventually converges in both environments, the relative acceleration of
adoption due to the subsidy is much larger when pollution damages are active. With pollu-
tion damages unaccounted for, the subsidy primarily affects adoption through its financial
channel—by lowering effective installation costs and speeding up LBD—yielding modest
aggregate welfare gains. When pollution damages are included, however, the same subsidy

additionally reduces future pollution exposure, generating a direct utility improvement and
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Figure 16: Welfare impact of subsidizing solar panel adoption cost across the income-wealth
distribution, extension with pollution
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indirectly mitigating the precautionary motive that suppresses early saving. As a result,
households adopt more rapidly, pollution declines sooner, and the welfare impact of the
subsidy expands well beyond its pure LBD effects. Table 10 quantifies this amplification: the
equivalent variation rises from 0.05% in experiment 2 to 2.02% in the pollution extension,
and every household benefits once pollution damages are accounted for.

In general equilibrium, the subsidy alleviates the short-run contraction in capital observed
in Figure 15, panel (a) by accelerating the decline in X;. Faster abatement raises effective
lifetime wealth and allows precautionary saving to recover earlier, reinforcing the positive
income effect of the subsidy. Hence, when pollution damages are active, the subsidy internalizes
both the LBD and pollution externalities: it increases the speed of adoption, smooths the
short-run adjustment of capital, and yields substantially larger welfare gains for all households.
Because households do not internalize the social benefit from lower pollution, the stronger
precautionary motive amplifies the wedge between private and social incentives to adopt,
which further magnifies the aggregate welfare benefit of subsidizing clean technology adoption
once pollution damages are accounted for.

The welfare gains from subsidizing adoption are also more progressive when pollution
damages are accounted for. Figure 16 shows that the average welfare improvement declines
monotonically with wealth, with the most significant gains accruing to lower- and middle-

wealth households. This pattern reflects two reinforcing mechanisms. First, low-wealth
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households are more exposed to the disutility from pollution in the baseline, thus the reduction
in pollution damages brought about by faster adoption generates a larger direct welfare benefit
for them. Second, pollution damages increase prudence and the marginal value of consumption
more strongly for liquidity-constrained households. The subsidy’s income effect—through
higher effective wealth and lower precautionary saving demand—is proportionally greater for
these groups. As a result, the welfare impact of the subsidy is both larger in aggregate and
more progressive when pollution damages are active. Unlike in the baseline without pollution,
where gains were concentrated among higher-wealth adopters, every household type benefits
once pollution exposure is internalized, and the relative improvement is most significant
among those who were initially most vulnerable to pollution and liquidity constraints.

In summary, once pollution damages are accounted for, subsidies internalize two external-
ities at once: LBD and environmental harm. The result is (i) much larger aggregate welfare
gains, (ii) universal support, and (iii) a strongly progressive distribution of benefits. This
stands in contrast to the baseline without pollution, where gains were modest, support was

incomplete, and financing burdens could be regressive.

6.3 Robustness

Table 11 presents a broad set of robustness checks examining how welfare gains and
political support vary with key model parameters and policy design features. The qualitative
conclusions are broadly robust but not universal. While many specifications deliver positive
aggregate welfare gains and broad-based winners, several experiments produce the opposite
outcome. For example, the income-capped subsidy generates a significant aggregate welfare
loss (—0.15%) with no households strictly better off and losses concentrated in the middle of
the distribution. More generally, policy designs that materially restrict subsidy access of early
adopters or parameter combinations that substantially slow diffusion can yield aggregate
welfare losses and highly skewed incidence.

The results can be grouped into four categories: technology parameters, subsidy design,
pollution-induced utility damages, and financing design. Importantly, only changes to tech-
nology parameters or subsidy design are quantitatively comparable to the baseline results,
because these reparameterizations and subsidy designs only change the transition dynamics
while preserving the steady states. Changes to financing design or pollution-induced utility
damages alter the steady state itself, making quantitative comparisons less meaningful. I

therefore focus on qualitative patterns for those cases.

Technology Parameters
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Varying the speed of diffusion of clean technologies (6;) produces the strongest quantitative
differences. Faster diffusion substantially magnifies welfare gains by accelerating cost declines,
adoption rates, and learning spillovers, raising aggregate welfare to about 3 percent. Conversely,
slower diffusion sharply reduces welfare and leaves only a small share of households better
off, highlighting that sluggish diffusion can offset the benefits of subsidy policies. Adjusting
the LBD elasticity (§) or exogenous cost decay (A) yields smaller effects: faster learning
marginally increases welfare, whereas slower learning or slower exogenous cost decline slightly
reduce it. These patterns suggest that dynamic spillovers matter primarily through their

interaction with diffusion rather than the exact curvature of the learning function.

Subsidy Design

Reducing the baseline nonrefundable subsidy rate from 30% to 15% increases aggregate
welfare by 25 percentage points and maintains universal winners. This finding underscores that
even moderate subsidies can effectively catalyze adoption and generate broad-based benefits
while limiting fiscal costs. However, replicating experiment 3’s income-capped subsidy when
accounting for pollution preferences maintains negative aggregate welfare and concentrated
losses, indicating that restricting subsidy access of earlier adopters can undermine policy
effectiveness regardless of other model features. Making the subsidy refundable maintains
positive welfare gains across the distribution, but reduces aggregate welfare by 10 percentage
points compared to the baseline nonrefundable design, reflecting higher fiscal costs that
dampen net benefits when households face disutility from pollution. Finally, making the
refundable subsidy income capped again yields negative aggregate welfare and concentrated

losses, reinforcing that limiting subsidy access of early adopters can negate policy benefits.

Heterogeneous Pollution Preferences

Adjusting pollution-related parameters also leaves the main result that subsidies are
universally welfare-enhancing intact. Importantly, these exercises are not quantitatively
comparable to the baseline, as they change the steady-state equilibra. Thus, I focus on
qualitative patterns. Equalizing pollution exposure across households (w = 0) raises aggregate
welfare by EV of about 0.78% and maintains universal winners. However, interestingly,
shutting down pollution heterogeneity increases welfare gains of lower-wealth households
relative to other groups’, as an equal change in utility from pollution reduction represents a
larger fraction of their baseline utility. The model’s conclusion that subsidies are universally
beneficial remains robust to smaller pollution inequality parameter (w half its baseline value)

or lower pollution disutility (v halved).
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Table 11: Robustness of welfare gains and political support across parameterizations

Panel A. Consumption-equivalent welfare gains (EV, %)

Scenario Bottom Middle Top Aggregate
Baseline (prog. tax + nonref. subs. + pollution) 1.30 2.85 1.83 2.02
Technology Parameters (quantitatively comparable)
0, x 1.25 (fast diffusion) 1.91 4.28 2.73 3.01
0 x 0.5 (slow diffusion) —0.07 —0.32 —0.17 —0.19
& x 1.5 (faster learning) 1.30 2.85 1.84 2.02
&€ x 0.5 (slower learning) 1.30 2.86 1.84 2.03
A x 0.5 (slower exog. decay) 1.18 1.85 1.42 1.50
Subsidy Design (quantitatively comparable)
7 % 0.5 (less subsidy) 1.42 3.25 2.06 2.27
Income-capped subsidy —0.11 -0.19 —0.15 —0.15
Refundable subsidy 1.23 2.71 1.74 1.92
Refundable, income capped subsidy —0.11 —0.20 —0.16 —0.16
Pollution Preferences (steady states change; qualitative comparison only)
w = 0 (uniform pollution exposure) 0.84 0.73 0.78 0.78
w x 0.5 (less pollution exposure inequality) 1.23 1.95 1.55 1.59
v x 0.5 (less pollution disutility) 0.63 1.40 0.86 0.98
Financing Design (steady states change; qualitative comparison only)
Flat tax financing 0.79 1.64 1.10 1.18
Less progressive tax 0.82 1.69 1.12 1.23
More progressive tax 1.65 3.63 2.29 2.58

Panel B. Share of households with EV > 0 (%)

Scenario Bottom Middle Top Aggregate
Baseline (prog. tax + nonref. subs. + pollution) 100.00 100.00 100.00 100.00
Panel A. Consumption-equivalent welfare gains (EV, %)
0y x 1.25 (fast diffusion) 100.00 100.00 100.00 100.00
0, x 0.5 (slow diffusion) 0.15 7.83 18.17 8.54
¢ x 1.5 (faster learning) 100.00 100.00 100.00 100.00
& x 0.5 (slower learning) 100.00 100.00 100.00 100.00
A x 0.5 (slower exog. decay) 100.00 100.00 100.00 100.00
Technology Parameters (quantitatively comparable)
7 % 0.5 (less subsidy) 100.00 100.00 100.00 100.00
Income-capped subsidy 0.00 0.00 0.00 0.00
Refundable subsidy 100.00 100.00 100.00 100.00
Refundable, income capped subsidy 0.00 0.00 0.00 0.00
Pollution Preferences (steady states change; qualitative comparison only)
w = 0 (uniform pollution exposure) 100.00 100.00 100.00 100.00
w x 0.5 (less pollution exposure inequality) 100.00 100.00 100.00 100.00
v % 0.5 (less pollution disutility) 100.00 100.00 100.00 100.00
Financing Design (steady states change; qualitative comparison only)
Flat tax financing 100.00 100.00 100.00 100.00
Less progressive tax 100.00 100.00 100.00 100.00
More progressive tax 100.00 100.00 100.00 100.00

Notes: “Bottom/Middle/Top” report average consumption-equivalent welfare gain (EV) within each initial
wealth tercile. “Aggregate” reports the average EV across all households in that scenario. Rows are grouped
into (i) technology parameters and (ii) subsidy design, which keep the same initial steady state as the baseline
and can be compared quantitatively, and (iii) pollution preferences and (iv) financing design, which require
recomputing the steady state. For groups (iii) and (iv), EV levels are internally valid but not quantitatively
comparable to the baseline or to groups (i)—(ii). Panel B reports the fraction of households with strictly
positive EV.
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Financing Design

The model’s qualitative conclusions also hold under alternative financing designs. Similar
to adjustments to pollution preference parameters, these exercises change the steady-state
equilibria, so I focus on qualitative patterns. Switching from the baseline progressive labor
income tax financing to uniform, less progressive, or more progressive financing maintains
positive aggregate welfare gains and broad-based winners.

Overall, the robustness exercises show that the paper’s main conclusions hold under a broad
but not universal set of assumptions. Subsidies generally enhance aggregate welfare and yield
widespread benefits when technology diffusion is sufficiently fast and early (wealthy) adopters
have subsidy access. However, several experiments demonstrate that these conclusions can
weaken or even reverse when diffusion is sluggish and subsidy eligibility of early adopters
is restricted. In particular, income-capped subsidies, and parameterizations that restrict
diffusion, can generate negative aggregate welfare changes. Thus, the robustness analysis
highlights the boundaries of the main results: the welfare and equity benefits of clean energy
subsidies are not automatic, but depend on policy designs that sustain diffusion and maintain

access for early adopters.

7 Conclusion

This paper examines the equity and efficiency of clean energy subsidies through the case of
US residential rooftop solar. By combining new empirical evidence on learning-by-doing with
a heterogeneous agent general equilibrium model featuring incomplete markets, irreversible
adoption, and unequal pollution damages, I quantify how alternative subsidy and financing
designs shape adoption, prices, and welfare across the income-wealth distribution.

The analysis shows that static incidence measures overstate the regressivity of residential
solar subsidies. Once learning-by-doing spillovers are accounted for, subsidies accelerate cost
declines, expand adoption, and generate broad welfare gains — even when direct fiscal transfers
appear to favor higher-wealth households. When unequal pollution exposure and its health
damages are incorporated, the gains become both universal and progressive: every household
benefits, and the poorest benefit most from cleaner air and faster cost declines.

The results also show that policy design matters. Progressive tax financing, intended
to improve fairness, can unintentionally dampen early adoption, weaken short-run wage
gains, and erode support among low-wealth households. Nonrefundability further excludes
liquidity-constrained households. In contrast, broadly available refundable subsidies speed
diffusion and raise aggregate welfare. The most equitable path therefore combines: (i) broad

early subsidies that accelerate learning and reduce future costs, and (ii) targeted support
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that relaxes liquidity constraints and internalizes pollution damages.

More broadly, the paper offers a quantitative framework for evaluating environmental
policy in environments with heterogeneous households, incomplete markets, and dynamic
externalities. The results for US residential solar suggest that when policy is designed to
internalize both learning and pollution damages, an accelerated clean energy transition can
also be an equitable one.

While the analysis focuses on clean energy adoption, the underlying framework is broadly
applicable to other settings in which technology diffusion interacts with inequality and public
finance. The same structure could be used to study the diffusion of electric vehicles, home
energy efficiency retrofits, or carbon capture systems, as well as non-environmental innovations
such as broadband expansion, digital payments, or health technologies. In all these contexts,
irreversible investment decisions, learning spillovers, and heterogeneous financing constraints
generate similar trade-offs between efficiency, equity, and fiscal cost. Extending the framework
to these domains would deepen our understanding of how technology policy can jointly

promote innovation and inclusion.
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Appendices

Appendix A Empirical Appendix

A.1 Data Sources and Variable Construction

A.1.1 Electricity and Energy Expenditure Data

I use the Residential Energy Consumption Survey (RECS) data from RECS (2023) to
analyze household-level annual electricity and total energy expenditure and consumption
variables. The RECS is a nationally representative survey of US households’ energy consump-
tion and expenditures, housing unit characteristics, and demographic information. I use 2020
RECS microdata, because it is the first year the survey started including state identifiers.
Including state identifiers in the analysis is essential because electricity prices vary across
states due to differences in electricity generation costs, taxes, and other factors. Due to the
lack of state identifiers in earlier RECS data, I cannot control for state fixed effects in the
regression analysis. The data includes the annual total electricity expenditure, in dollars, and
electricity consumption, in BTUs, of US households in 2020, together with information on
whether there is on-site electricity generation using rooftop solar panels, the type of heating
fuel used, and other housing unit and household characteristics. I calculate the unit electricity
price paid by households in 2020 as the ratio of the annual electricity expenditure to the
annual electricity consumption for each household.

To describe the effect of having on-site solar generation on unit electricity price paid by

households and annual electricity expenditure, I estimate the following regression specification.
In(Y;) = a + S Solar; + v X; + 5 + €;,

where Y; is the outcome variable of interest (annual electricity expenditure, annual total
energy expenditure, electricity unit cost, or total energy unit cost) for household ¢; Solar; is
an indicator variable for whether household 7 generates solar power on-site; X, is a vector
of household and housing unit characteristics (household size, income category, age of head,
etc.); d, is state controls; and ¢; is the error term. I estimate four specifications for each
outcome variable, all with state controls, but with and without additional household and
housing unit controls using the survey weights provided in the RECS data.

I present the results of Weighted Least Squares (WLS) estimates of this regression with
and without additional controls in Table A.2. The results of the regression show that the

effect of having solar generation on the unit electricity price, presented in columns (1) and
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Table A.1: Regression results for the effect of solar generation on annual electricity and total
energy expenditure

. Electricitiy Total Energy
Variables — =
(1) (2) (3) (4)
Solar -721.956 -709.430 -688.5617 -609.9241
(15.938) (15.881) (24.286) (27.094)
State Controls Yes Yes Yes Yes
Additional Controls Yes No Yes No
Observations 15,044 15,044 15,044 15,044

Notes: Standard errors are in parentheses. Fixed effects indicate the inclusion of state fixed effects and
additional controls refer to inclusion of factors such as household and housing unit characteristics.

(2), is negative and statistically significant. Specifically, having solar generation reduces the
unit electricity price by $0.021 per BTU, which is a substantial reduction given that the
average unit electricity price in the entire sample is around $0.041 per BTU. Thus, having
solar generation reduces the unit electricity price by almost 50%. The direction of the effect,
presented in columns (3) and (4), is similar when the dependent variable is the unit energy
price, but the magnitude of the effect is smaller. The average unit energy price in the entire
sample is around $0.026 per BTU, and having solar generation reduces the unit energy price
by $0.009 per BTU, which is around 36% of the average unit energy price.

In order to understand the total nominal magnitude of the effect of having on-site solar
generation on household’s annual electricity expenditure, I run an alternative regression
where the dependent variable is the annual electricity expenditure of households and annual
electricity consumption is an additional control. The results of this regression are presented
in columns (1) and (2) Table A.1. The results show that having solar generation reduces
the annual electricity expenditure of households by more than $700 annually, which is a
substantial reduction given that the average annual electricity expenditure in the entire
sample is around $1,500. The effect of having solar generation on the annual total energy
expenditure of households is also negative and statistically significant, but the magnitude of
the effect is smaller. The results of the regression, presented in columns (3) and (4), show
that having solar generation reduces the annual total energy expenditure of households by
around $600 annually and the average annual total energy expenditure in the entire sample
is around $2,171. Thus, having solar generation reduces the annual total energy expenditure

of households by around 30%.
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Table A.2: Regression results for the effect of solar generation on electricity and total energy

unit costs
. Electricitiy Total Energy
Variables
(1) (2) (3) (4)
Solar -0.0214 -0.0214 -0.0093 -0.0091
(0.000) (0.000) (0.000) (0.000)
State Controls Yes Yes Yes Yes
Additional Controls Yes No Yes No
Observations 15,044 15,044 15,044 15,044

Notes: Standard errors are in parentheses. Fixed effects indicate the inclusion of state fixed effects and
additional controls refer to inclusion of factors such as household and housing unit characteristics.

A.1.2 Policy Shocks Instrument

Data Scope and Unit of Observation
I use the North Carolina Clean Energy Technology Center’s DSIRE (2025) database to

assemble a monthly policy shock panel. The panel is built at two geographic resolutions used
in the empirical analysis: state and county levels. I use the state-month panel for specifications
with state fixed effects, and county-month panel for specifications with county fixed effects. I
retain all program records with residential applicability (statewide, county, municipal, and
utility programs). Programs that apply to the entire state are assigned to all counties in the

state when constructing the county-month panel. I normalize county identifiers to five-digit

FIPS codes.

Dates and Activity Windows

Each program has an activation window defined by its start and end dates, defined at
monthly frequency. For programs with missing dates, I follow multiple imputation strategies.
First, I search program descriptions for date information. If an active program’s end date
is missing, I set its end month to December 2025. If a start date is missing, I use a the
date program was first listed in the DSIRE database as a proxy. For inactive programs with
missing end dates, I parse the program description for text such as "expired in YYY” to infer
the end month when possible; otherwise, I drop the record. I assume that a program is active

in all months between its start and end dates, inclusive.

Policy Shock, Z;,

The policy shock is a discrete timing shock that flags the onset of a new residential solar
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program in location j in month ¢:

Z; = W¥{3 program m with start month = ¢, and serving location = j}.

If multiple programs begin in the same location and time, Z;; remains 1, i.e., it is not a
count of new programs. For IV, I use a lagged version of this variable, Z;; 12, with L = 12

months lag, to allow for a one-year adoption response window.

Policy Generosity, g;;

I construct a monthly policy generosity index g;; to control measures contemporaneous
subsidy intensity in $ per watt in location j and month ¢. It aggregates all active programs’
incentive values mapped to a common unit of $ per watt, then sums across concurrent

programs:

Gt = Z Generosity per Watt,, ,, M, = {programs active in j at ¢}.
mGijt

Mapping Program Parameters to Generosity per Watt

Each program’s parameterization is converted to per-watt generosity using observed NREL
(2023) average state-year price and size benchmarks. I compute the average net cost per watt
in state s, year y, denote by P, as total price divided by total watts in a state-year. Let S,
be the average system size (in watts) in same state-year. If a state-year average is unavailable,
then I use the national-year average from the same NREL (2023) sample.

For a program m applicable to state s and month ¢ in year y, I use the following mapping

rules:
e Rebate in ($/W): If the program offers a fixed rebate amount, use the amount as is.

e Percentage of cost (%): Multiply the percentage by the average net cost per watt

Csy-
e Flat amount ($): Divide the flat amount by the average system size S; .
e Production based and other non-capital incentives: Excluded from g;;.

If a program lists multiple parameter rows, I sum the implied generosity per watt across rows

in a month. Negative or nonsensical generosity values are set to zero.
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Appendix B Theoretical Appendix

B.1 [Initial and Terminal Recursive Equilibria

Prior to the availability of the clean energy technology for adoption, households face no

adoption decision and are in state s = 0. The state space is:
Z=AxL, B(Z)=B(A) xP(L),

and the distribution of households is given by ® € M, where M is the set of Borel probability
measures on (Z, B(Z)).

Definition 2 Given the labor income tax rate T, evogenous dirty energy price q, and ambient
air pollution function X (®), a recursive competitive equilibrium consists of: a value function
V : Z x M — R, household policy functions ¢,a’ : Z x M — R, aggregate factor demands
K,L : M — R, factor price functions r,w : M — R, a transfer function T : M — R, a
pollution function X : M — R, and law of motion H : M — M such that:

1. Household optimization. Given the pricing functions r(®), w(®P), transfer function

T(®), V solves the following Bellman equation:

V(a, ;@) = max U(e, X(®)) + FE {V]w(®)(1 - T+ (14 7(®))a+ T(P) — ¢ — ge(c), £ D']|¢}

subject to ' = H(P),
(B.1)

and c is the associated consumption policy function, a' = w(®)(1—7(®))+(1+7(P))a+
T(®) — ¢ — ge(c) is the savings policy function, and E is the conditional expectation

operator.

2. Factor prices. Factor prices r(®) and w(P) satisfy the firm’s first-order conditions:

3. Government budget. Given the factor prices r(®) and w(®) and the tax rate 7°, the

government runs a balanced budget every period such that T(®) satisfies:

T(®) = w(®)r’ / (dd.

st
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4. Pollution. The ambient air pollution X (®P) is a function of the aggregate energy

consumption and satisfies:

X(®) =0 ( / e(c(a, £; @))d@) .

Z

5. Market clearing. For all ® € M,

L(®) = /Z (da,

K(H((D)):/a'(a,ﬁ;fb)d@,

Z

/Z~ [c(a, ;@) + d'(a, l; D) + ge(c(a, ; ))] dP = F(K(P), L(P)) + (1 — 0)K(P) — K(H(D)).

6. Aggregate law of motion H is generated by m and a’, explicitly stated in Appendiz B.2.
Next, I characterize the recursive competitive equilibrium in the initial steady state as follows:

Definition 3 Given the labor income tax rate ° the stationary recursive equilibrium is a
value function V', household policy functions c,a’, aggregate production factors K, L, prices
r,w,q, government transfer T, pollution function X, and a measure ®, with ® € M invariant
under H, such that the household optimization, factor prices, government budget, pollution,

and market clearing conditions above hold, and ® satisfies:
o = H(D).

Once adoption is available and irreversible, the terminal steady state has all households
in state s = 1. Then Z = A x £ x {1}. The recursive equilibrium is defined analogously, with
q replaced by ¢ and X (®) = 0 for all .

B.2 Explicit Statement of the Aggregate Law of Motion in the
Steady States

First, define the Markov transition function: Qg : Z x B((Z)) — [0,1] by:

Qol(a,0), (A, L)) = Z (e if a'(a,t; @) € A,

ver | 0 otherwise,
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for all (a,¢) € Z and (A, L) € B(Z). Thus Qo ((a, £), (A, £)) is the probability that an agent
with current assets a and productivity ¢ ends up with assets a’ € A and productivity ¢ € £

tomorrow. Then, the aggregate law of motion for the initial steady state distribution is given
by:

(A L) = H(®)(A, L) = /Z Qul(a.0). (A, L))

_ /Qq>((a,€), (A, £))®(da x df).

B.3 Explicit Statement of the Aggregate Law of Motion During
the Transition Path

Define the Markov transition functions @y : £ — [0, 1] induced by the transition probabil-

ities m and optimal policies a;y1(a, ¢, s) and Si(a,?, s) as:

m(l'|0) if appa(a,l;s A,
Qul(a.t.9). (AL, {01y = 3 T (a,0.5) €

Vel 0 otherwise,

for all (a,¢,s) € Z and (A, L,{0,1}) € B(Z). Then, for all (A, L,{0,1} € B(Z)), the

aggregate law of motion for the transition distribution is given by:

By (A, £, {0,13) = [T(®)] (A, £, {0,1}) = / Qu((a, 0, 5), (A, £, {0, 1}))dD,.

Appendix C Quantitative Appendix

C.1 Calibration Detalils

As a sensitivity check, I adjust the baseline uniform labor income tax rate assumption to
match the 2000 US federal income tax brackets and rates presented in Table C.1, sourced
from IRS (2000). I compute the uniform labor income tax rate 7¢ such that the average
labor income tax liability under the 2000 tax brackets equals the average labor income tax
liability under the uniform tax rate in the model’s initial steady state. Using the 2000 tax
brackets, I find that the uniform labor income tax rate that matches the average tax liability
is 74 = 0.1953.
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Table C.1: Income Tax Brackets and Rates

Income Bracket ($2000) Marginal Tax Rate (%)

0 - 26,250 15%
26,250 - 63,550 28%
63,550 - 132,600 31%
132,600 - 288,350 36%
288,350 - above 39.6%

C.2 Computation Details

Steady States

Two steady states are computed:

1. Initial steady state: Clean energy technology is unavailable (s = 0), exogenous

dirty energy price is ¢, and the entire proceeds from the exogenous and flat labor
income tax rate 7¢ is distributed lump-sum to households equally. After initializing
parameters, guess K and 7', and solve the Bellman equation (B.1) using Value Function
Iteration with linear interpolation and a uniform asset grid. I use Golden Section Search
for optimization and Howard’s step for speed improvements. I compute the invariant
distribution of (a, ¢) by iterating over the density function on a finer uniform asset grid
until convergence. Finally, I compute the K and 7" implied by the invariant distribution
and compare to the initial guesses, updating using a dampening parameter a = 0.95

until convergence within a tolerance threshold equal to 107°.

. Terminal steady state: The entire population has adopted the clean technology
(s = 1), the exogenous clean energy price is ¢, and the entire proceeds from the
exogenous and flat labor income tax rate 7° is distributed lump-sum to households

equally. The same algorithm is used to find (K, T, Poo)-

Transition Path Algorithm

Given a finite horizon T = 190, the model is solved under perfect foresight using an

outer-loop fixed-point algorithm:

1. Initialization: Import the value and policy functions for both the initial and terminal

steady state calculations. Also import the invariant distribution at the initial steady

state.
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2. Guessing: Guess sequences { Ky, Ty, Z; }1_,, where t = 1 is the period when the transition
starts and t = T is sufficiently far in the future so that I can assume that the economy
is sufficiently close to the new steady state. Also calculate the factor prices {ry, w;}l_,

implied by evaluating the firm’s first-order conditions at the guessed capital path.

3. Backward induction: at t = T+ 1, the economy is in the terminal steady state, so
Kry = Ko, Tryy = Ty, and Vi =V, and I can use the terminal value functon
from the previous step in the right-hand side of the period-T" Bellman equation, given
by equations (9) and (10). From there, I solve for the household’s value and policy

functions with backward induction for ¢t =1,...,T.

4. Forward simulation: Using the policy function from the previous step, I simulate the
economy forward, starting from the invariant distribution at the initial steady state.
At each period t = 1,...,T, I evolve the joint distribution of households over assets,
income, and adoption status, given the transition matrix of idiosyncratic income shocks

IT and the endogenous policy functions for asset accumulation and technology adoption.

(a) Adoption desire. For each household currently in state (a,y,s = 0) (a non-
adopter), I evaluate its discrete adoption choice based on the period-t value
functions, yielding an indicator [;(a,y) = 1 if adoption is preferred and 0 otherwise.
The total mass of households that wish to adopt is then

Mtwant = th(a7y70) Lf(aay))

a7y

where fi(a,y,0) denotes the joint distribution of assets and income among non-

adopters.

(b) Calvo adoption constraint. To capture gradual diffusion due to market frictions
and supply constraints, I impose a Calvo-type restriction: only a fixed fraction
0; € (0,1) of non-adopters can realize their adoption decision in any given period.
If the desired adoption mass exceeds the allowed fraction, the realized adoption

flow is scaled down proportionally:

M = min <M;”a“t, 0> fila,y, 0)) .

a,y
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The probability that a household wanting to adopt actually does so is

1, if My < 0,37, fila,y,0),

Pr = et Zmy ft(aa Y, 0)
Mtwant

, otherwise.

Hence, only a random fraction p; of the willing adopters transition from s = 0 to
s =1 (adopt), while the rest remain non-adopters. The resulting realized adoption

flow pifi(a,y,0)I¢(a,y) enters the law of motion for the distribution.

(c) Aggregate updates. The updated distribution f;;(d’,y’,s’) is then computed
by integrating the policy functions and transition probabilities over assets and
income. From this distribution, I compute the implied aggregates {K;, T3, Z; } for

each ¢, which will be used to update the outer-loop guesses in the next iteration.

5. Convergence: Compare the implied {K;, T}, Z;}]_, to the initial guesses and modify
the guesses using a dampening parameter in (0, 1) until convergence of the guess and

updated paths within a tolerance threshold equal to 1073,

When the model incorporates the pollution disutility in household preferences, I follow
the same algorithm with the addition of updating the ambient air pollution level sequence
{X,}L, at each period t in the outer loop based on the aggregate energy consumption implied

by the distribution at period t.

C.3 Welfare Change Calculations

For each household state (a, ¢, s), I compute the consumption equivalent variation (EV)

welfare change measure between the baseline and counterfactual paths.

Equivalent Variation (EV)

I define EV as the percentage change in consumption that, if applied to the baseline
consumption path, would yield the same lifetime utility as under the counterfactual path.
Thus, a positive EV indicates that the household is better off under the counterfactual
scenario. I consider two counterfactual scenarios: (i) the technology transition without any
subsidies relative to no technology transition, and (ii) subsidizing the clean energy technology
adoption at rate 7 = 0.3 relative to not subsidizing. The first EV calculation captures the
welfare change from introducing the clean energy technology, while the second EV calculation
captures the welfare change from subsidizing the clean energy technology adoption at rate

7 = 0.3 relative to not subsidizing.
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In order to compute the welfare change due to the introduction of the clean energy
technology, I compute the EV for a household in initial steady state (a,f) as \EV:ech(q, ¢)

that solves:

T

Z 6tU(Ct(CL, E’ O)transition) :

t=1

T
El Z BtU((l + )\EV,tech(a’ g))Ct((Z, g)initial ss) _ El
t=1

where ¢;(a, £)™48 s is the consumption path under no technology transition (the technology

remains available and the economy remains in the initial steady state) and c;(a, £, 0)ansition jg
the consumption path under the technology transition, without any subsidies. If AEV:*e?(q, ¢) >
0, then the household is better off with the introduction of the clean energy technology and
supports the transition. Under the CRRA utility specification, the EV of the technology

transition can be computed in closed form as:

exp {(1 o ﬁ)[‘/l(a’£7 O)transition o V(CL, g)initial ss]} o 1’ if o = 17

1
vl(a,ﬂo)transition 1—0o .
|: V(a7€)initial ss - 1) lf o # 1’

/\EV,tech(a’ E) —

where Vi (a, £, 0)amsition s the value function at ¢+ = 1 under the scenario with no adoption
subsidy during the technology transition and V(a, £)8lss ig the value function at the initial
steady state when the clean technology is unavailable.

Formally, let ¢;(a, ¢, s)” be the consumption policy function at time ¢t = 1,..., T, under
a scenario with adoption subsidy 7 for a household with state (a, ¢, s) at the initial steady
state t = 0. Then, the EV from subsidizing the clean energy technology adoption at rate
7 = 0.3 relative to not subsidizing for a household in initial steady state (a, ¢) is computed as

M\EVisubs (q () that solves:

El = ]El

T
Z BtU((l + )\EV,subs(a, E))ct(a,f, O)T:O)
t=1

T

S B (e, 1,003
t=1

Under the CRRA utility specification, the EV can be computed in closed form as:

rvningg gy = =A@ O™ = Vil b0/ -1, o =1,

Vi(a,l, 7=0.3 | T—¢ .
[%} — ]_, if o 7é 1,

where V(a, £,0)7=° is the value function at ¢ = 1 under the scenario with no adoption subsidy
for non-adopters and V;(a, £,0)7=3 is the value function at ¢ = 1 under the scenario with a
30% adoption subsidy for a household with initial state (a, /) at t = 1.

5



	Introduction
	Data and Empirical Motivation
	Benefits of Residential Rooftop Solar Panel System Deployment
	Private Benefits
	Social Benefits

	Cost of Residential Rooftop Solar Panel System Installations
	Did Rooftop Solar Panel Installations Experience Learning Effects?

	Model
	Consumers
	Producers
	Government
	Ambient Air Pollution
	Learning-by-Doing Spillover
	Market Clearing
	Formulation
	Transitional Dynamics


	Quantitative Analysis
	Functional Forms
	Calibration
	Baseline Economy (No Pollution Disutility)
	Calibration for Pollution Damages

	Computation

	Quantitative Results
	Model Fit
	Baseline Results

	Sensitivity Analysis
	Alternative Financing and Subsidy Designs
	Extension: Activating Pollution Damages and Inequality
	Robustness

	Conclusion
	Appendix Empirical Appendix
	Data Sources and Variable Construction
	Electricity and Energy Expenditure Data
	Policy Shocks Instrument


	Appendix Theoretical Appendix
	Initial and Terminal Recursive Equilibria
	Explicit Statement of the Aggregate Law of Motion in the Steady States
	Explicit Statement of the Aggregate Law of Motion During the Transition Path

	Appendix Quantitative Appendix
	Calibration Details
	Computation Details
	Welfare Change Calculations


