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failure can worsen outcomes. I develop a dynamic general equilibrium model to derive an

optimal output tax formula that depends on firm-level market power and carbon intensity.

Calibrated to the top five carbon-intensive US sectors, the optimal tax gets significantly

smaller than the tax without considering market power, as competition decreases. In a set of

policy experiments, I show that policies designed for incorrect market structures could be more

detrimental than not intervening at all.
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1 Introduction

For some time now, the theory of optimal environmental policy has been concerned with the

implications of market power in polluting industries; however, the literature on optimal climate

change policy has not yet addressed this issue. When a production externality, such as pollution,

is the only economic distortion, the Pigouvian tax, equal to marginal external damages or the dif-

ference between marginal social and private costs, is the first-best policy. However, when polluting

firms have market power, the Pigouvian tax is no longer the first-best policy. Indeed, imposing

the Pigouvian tax on an unregulated, imperfectly competitive industry may lead to welfare loss by

reducing the output by more than the socially optimal amount. In this case, the optimal policy

should include two policy instruments: a subsidy on output to increase production to competitive

levels and a tax on pollution to reduce production to the socially optimal level. However, competi-

tion and environmental authorities are often separate, and thus, these policies are uncoordinated.

In the absence of industrial policy to regulate product market distortions, the environmental policy

should account for market power since the Pigouvian tax is only efficient when implemented with

the second policy insturment, i.e., the output subsidy. How different is the optimal policy needed to

regulate an imperfectly competitive carbon-emitting industry from the optimal policy to regulate a

competitive carbon-emitting industry when only one policy instrument is available? How much the

policy must be adjusted depends on market structure, characterized by the elasticity of demand

and industry size.

This simple theoretical observation, studied for local pollutants’ regulation in the past, e.g.,

Buchanan (1969), Barnett (1980), Levin (1985), Shaffer (1995), Simpson (1995), Katsoulacos and

Xepapadeas (1996), Lee (1999), and Requate (2006), has been overlooked in the literature on

climate change policy. Unlike local pollutants, greenhouse gases, measured in carbon dioxide (CO2)

equivalent units, in the atmosphere do not cause immediate damage; instead, the accumulation of

global greenhouse gas emissions drives climate change, which increases the frequency and influences

the magnitude of extreme weather events, such as hurricanes, heat waves, and droughts. Thus,

regulating carbon emissions has dynamic implications, and the optimal policy should account for

the intertemporal nature of climate change. The literature on optimal carbon policy has focused on

the intertemporal nature of climate change and the uncertainty surrounding the damages caused

by carbon emissions, e.g., Nordhaus (1994), Manne and Richels (2005), Anthoff and Tol (2013),

and Golosov et al. (2014). However, it has not yet addressed the intratemporal tradeoff between

lack of competition and climate damage. I address this gap by analyzing the implications of market

power in the context of the design of a carbon policy.

First, I theoretically derive the optimal policy for an imperfectly competitive and unregulated

carbon-intensive industry in the context of climate change. Furthermore, I quantitatively evaluate

the implications of market power on the optimal policy. Using a seminal dynamic general equilib-

rium climate change model, I show that when industry size is fixed, the optimal carbon tax gets

smaller as competition decreases. The underlying mechanism is that since the equilibrium output

is lower with market power, the optimal tax does not have to be as high as it would be in a compet-
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itive industry to achieve the same reduction in emissions. This result depends on the assumption

that the industry structure is exogenous, does not change over time, and is not affected by policy.

The literature on optimal climate change policy has focused on the assumption that carbon-

intensive industries are perfectly competitive when designing optimal policy. Market power is a

valid concern in the context of climate change policy due to the concentrated structure of carbon-

intensive industries, which could give firms pricing power over their products. I begin by examining

data on market power in carbon-intensive industries in the US.

I present descriptive evidence that most carbon-intensive industries have markups greater than

unity, indicating that they charge prices greater than their marginal costs, and also have posi-

tive economic profit rates. I calculate industry-level greenhouse gas (GHG) intensity (i.e., carbon

intensity) as the ratio of the industry’s total GHG emissions using data from the US Environmen-

tal Protection Agency’s Greenhouse Gas Reporting Program (GHGRP) and the industry’s value

added, which I calculate as the difference between the industry’s revenue and cost of goods sold

using data from the S&P Global Market Intelligence’s (2023) Compustat database. To calculate

industry-level markups, I use Compustat data and follow the methodology of Traina 2018 using the

production function approach. To calculate industry-level economic profit rates, I also use Compu-

stat data and follow the methodology of Eeckhout (2025). I provide details about the data sources

and methodology I used to calculate firm-level markups, economic profit rates, and greenhouse gas

intensity (i.e., carbon intensity) in Supplementary Appendix A.

In Figure 1, I plot the carbon intensity of US publicly-traded firms with reported carbon emis-

sions against their markups in 2022. The vertical axis shows the carbon intensity of the firm, which

is the ratio of the firm’s greenhouse gas emissions, measured in metric tons of CO2 equivalent

(mtCO2e), and the firm’s value added, in units of millions of dollars, measured as the difference

between the firm’s revenue and cost of goods sold. The horizontal axis shows the firm’s markup,

which is the ratio of the firm’s price over the marginal cost of production. The majority of the

firms in the scatter plot lie in the right shaded area, indicating that they have prices greater than

their marginal costs, i.e., they charge marked up prices.

In addition to the carbon-intensive firms’ ability to charge prices greater than their marginal

costs, I also find that the majority of the carbon-intensive firms have positive economic profit

rates. Figure 2 plots the carbon intensity against the economic profit rate of US publicly-traded

firms with reported carbon emissions in 2022. The economic profit rate is the ratio of the firm’s

economic profit, which is the difference between the firm’s accounting profits, i.e., net income, and

the shareholder’s equity times the discount factor, and the firm’s revenues. As it can be seen from

the scatter plot, the majority of the firms lie in the right shaded area, indicating that they have

positive economic profit rates.

For both figures, the scatter points are color coded to indicate the three-digit 2022 North

American Industry Classification System (NAICS) code the business belongs to, mapped on the

legend. In addition to the this cross-sectional evidence, I also find that market power and imperfect

competition have been prevalent and increasing in the US carbon-intensive industries over the past
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Figure 1: Markups and carbon intensity of US publicly-traded and carbon emitting firms in 2022.

Sources: Markups are calculated using the S&P Global Market Intelligence (2023) and carbon intensities are calculated
using data from US Environmental Protection Agency (2024) and S&P Global Market Intelligence (2023).

decade. I plot the sales-weighted average markup and economic profit rate of the US carbon-

intensive industries in Figures 3 and 4, respectively, for the years 2010 to 2023.

Based on this evidence, I develop a theoretical model to derive the optimal policy for an

oligopolistic and unregulated carbon-intensive industry in the context of climate change. I build

this model on the dynamic general equilibrium model with climate change from Golosov et al.

(2014). I extend their model to allow for imperfect competition and quantitatively evaluate the

implications of market power on the optimal policy when regulation is restricted to a single policy

instrument.

I extend Golosov et al.’s (2014) dynamic general equilibrium climate model to allow for imper-

fect competition in carbon-intensive intermediate input sectors. Throughout the paper, I refer to

carbon-intensive intermediate input sectors with imperfect competition as carbon-intensive sectors

for brevity. Each sector has a fixed number of firms producing differentiated inputs under Cournot

competition, with firm-specific productivity and emissions intensity. Sector output is a constant

elasticity of substitution (CES) aggregate. This framework features the Cournot oligopoly compe-
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Figure 2: Economic profit rates and carbon intensity of US publicly-traded and carbon emitting
firms in 2022.

Sources: Economic profit rates are calculated using the S&P Global Market Intelligence (2023) and carbon intensities
are calculated using data from US Environmental Protection Agency (2024) and S&P Global Market Intelligence
(2023).

tition modeled in Atkeson and Burstein (2008). Finally, I also introduce fixed costs of intermediate

goods production, which are paid in units of the final good, in order to reflect the capital intensity

of carbon-intensive industries.

Under this generalized model, I derive a firm-specific optimal output tax formula for the

oligopolistic and unregulated carbon-intensive producers. The optimal output tax is the sum of

the differences between the marginal social cost and the marginal private cost of carbon emissions

associated with a unit of firm output and between the marginal revenue and the marginal cost

of intermediate good production. The latter difference is a simple function of the intermediate

good price and the producer’s price elasticity of demand. By the law of demand, the elasticity of

demand is negative; thus, this output tax formula implies that the optimal output tax is less than

the optimal tax for perfectly competitive producers, equal to the marginal external damage at the

optimal allocation.

I focus on the design of an optimal output tax instead of a carbon tax. The output tax is more

versatile than the emissions tax, as it can regulate both the output and emissions of carbon-intensive
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Figure 3: Sales-weighted average markups of US carbon-intensive industries from 2010 to 2023.

Note: The blue shaded area indicates markups greater than unity.

Figure 4: Sales-weighted average economic profit rates of US carbon-intensive industries from
2010 to 2023.

Note: The blue shaded area indicates positive economic profit rates.

producers, while the emissions tax can only regulate emissions. While a carbon tax cannot provide

incentives for firms with both zero-carbon emissions and market power to increase their output, a

negative output tax can encourage these firms to produce more.

I quantitatively evaluate the adjustment of the optimal tax formulation by calibrating pa-
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rameters governing the generalized model to match characteristics of publicly traded and carbon-

intensive firms in the US. I calibrate the size of each industry to match its the Herfindahl-Hirschman

Index (HHI), the elasticity of demand to match each industry’s average markups given its effective

size, and the carbon intensity of each intermediate good producer to industry averages. Further-

more, I adjust the benchmark calibration of the output shares in the final goods production to

incorporate the variety of intermediate production factors used in final good production, rather

than energy inputs. My quantitative model replicates the benchmark results from Golosov et al.

(2014) as a special case and shows that when an industry’s market structure is exogenous the op-

timal output tax gets smaller as market power increases. On the other hand, the effect of moving

along the firm productivity distribution within a sector on the optimal output tax is ambigious and

depends on the relative rates of change of the firm’s marginal cost and its markups.

Finally, I conduct a series of policy experiments to evaluate the welfare implications of alterna-

tive policy designs. First, I evaluate the welfare loss associated with imposing the optimal output

tax for perfectly competitive carbon-intensive producers on oligopolistic producers. This case is

equivalent to imposing an economy-wide uniform tax on marginal emissions of all carbon-intensive

producers, regardless of their market power. I find that the welfare loss associated with this policy

is larger than the welfare loss associated with not intervening at all when the regulated industries

are oligopolistic. Second, I evaluate the welfare loss associated with imposing a uniform sector-

wide output tax on all producers within the same sector, regardless of their emissions intensity and

markup heterogeneity. I set the sector-wide output tax equal to the optimal output tax implied

for the oligopolistic producers that are homogeneous within the sector. I find that the welfare loss

associated with this policy is smaller than the welfare loss associated with imposing the economy-

wide uniform carbon tax on oligopolistic producers, but larger than the welfare loss associated

with not intervening at all. Finally, I also evaluate the welfare loss associated with imposing the

optimal output tax for oligopolistic carbon-intensive producers on perfectly competitive producers.

I find that the welfare loss associated with this policy experiment is the largest among all policy

experiments, as it could subsidize the output of perfectly competitive producers, which could lead

to even more overproduction beyond the socially optimal level. These results imply that the design

of the optimal policy that regulates carbon-intensive industries should carefully account for the

market structure of the industry, as the optimal output tax is not a one-size-fits-all policy.

This study bridges two strands of literature. First is the extensive literature on optimal policy

to control the problem of climate change while maintaining economic growth. Many macroeconomic

studies of optimal carbon taxes focus on the climate externality as the only distortion in the modeled

economy, e.g., Nordhaus (1994), Manne and Richels (2005), Anthoff and Tol (2013), and Golosov

et al. (2014). In such a setting, the optimal carbon tax is equal to the marginal damage of carbon

emissions, which is Pigouvian, named after the seminal work of Pigou (1920). Few optimal carbon

tax studies consider other pre-existing distortions, e.g., Acemoglu et al. (2012) consider a static

monopoly distortion in the market for machines used in carbon-intensive intermediate production,

and Barrage (2019) considers other taxes on labor and capital. However, these analyses do not
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consider monopoly distortions in carbon-intensive industries. If implemented, carbon taxes will

interact with the market structure of carbon-intensive industries. On the one hand, carbon taxes

reduce the production of carbon-intensive goods. On the other hand, carbon taxes could exacerbate

monopoly distortions in carbon-intensive industries by increasing costs and reducing competition.

I contribute to this literature by considering the interaction between carbon taxes and monopoly

distortions in carbon-intensive industries by incorporating imperfect competition into a dynamic

integrated assessment model.

Second, several studies have considered the interaction between environmental policy and mar-

ket structure. Buchanan (1969) was the first to consider the implications of monopoly distortions

in the context of environmental policy. He argued that the optimal tax on a polluting monopolist

should be lower than the Pigouvian tax because the monopolist’s output is lower than the com-

petitive level. He graphically illustrated the welfare loss associated with levying a Pigouvian tax

on a polluting monopolist. Barnett (1980) formalized Buchanan’s insight in a general equilibrium

model. He describes that the ideal policy solution for a polluting monopolist would incorporate two

policy actions: One device increases the monopolist’s production, and another controls the external

diseconomic effects of the monopolist’s production. Instead, Barnett (1980) assumes that policy-

makers cannot directly correct the product market distortion, and the pollution tax is the only

tool available to achieve the socially optimal allocation. He concludes that the optimal pollution

tax on an unregulated monopolist is smaller than marginal external damages, and the difference

between the two increases as the price elasticity of demand for the polluter’s product decreases,

i.e., the demand is more inelastic. Baumol and Oates (1988) summarizes that the optimal tax on

an unregulated monopolist depends on the marginal external damages, the demand elasticity, and

the abatement cost function of the monopolist’s production.

Beyond the polar cases of perfect competition and monopoly, the analysis of optimal environ-

mental policy under an oligopoly market structure has been carried out extensively. Levin (1985)

examines various forms of taxation to control pollution from a Cournot oligopoly of homogenous

goods. He uses the insight that the optimal tax on polluting, imperfectly competitive, and unregu-

lated firms is less than the marginal external damages and asks its implications for regulating stock

pollutants driving climate change.

The study of optimal tax on polluting oligopolists further developed from a static setting to a

dynamic setting. Shaffer (1995), Katsoulacos and Xepapadeas (1996), and Lee (1999) extend the

analysis to a Cournot oligopoly of homogenous goods to incorporate the possibility of endogenous

market structure, i.e., the possibility of entry and exit of firms. Imposing a tax on polluting firms

may affect the number of firms in the industry, affecting the optimal tax rate. Under the endogenous

market structure setting, the optimal tax on polluting oligopolists may be lower, equal, or higher

than the Pigouvian tax because now the regulator has to consider three effects: the beneficial effect

of reducing pollution, the negative effect of reducing already distorted output due to imperfect

competition, and a third positive effect of bringing the number of firms closer to the second-best

optimum. If the regulator omits the third effect, the optimal tax is less than the marginal external
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damages. However, if the third effect is taken into account, the result depends on the curvature

of market demand. The intuition behind this internalization result is that the equilibrium number

of firms may be above (or below) the socially optimal level, resulting in an additional distortion.

The optimal tax could reduce this distortion by raising (or lowering) its rate, which is why it

may be optimal to have a tax greater (or less) than marginal external damages. Finally, Requate

(2006) provides a comprehensive review of the literature on environmental policy under imperfect

competition and summarizes optimal policies for oligopoly models, such as Bertrand competition

with homogenous goods, price competition with differentiated goods, and monopolistic competition.

I build a foundational model to study the dynamic interaction between carbon taxes and market

structure in a dynamic general equilibrium model.

The rest of the paper is organized as follows: In Section 2, I introduce a generalized version

of the dynamic general equilibrium climate change model from Golosov et al. 2014 and introduce

extensions to include market power in the carbon-intensive intermediate input industries. Once

I introduce the generalized and extended model and its assumptions, I review the derivation of

Golosov et al.’s (2014) constant optimal social cost of carbon formula. Then, I look at the decen-

tralized equilibrium outcomes under my new assumption of market power and derive the optimal

output tax formula for the oligopolistic and unregulated carbon-intensive intermediate input sec-

tors. Section 3 outlines my quantitative analysis and computation strategy. In Section 4, I calibrate

the model to match the top five carbon-intensive intermediate input characteristics in the US and

quantitatively evaluate the implications of market power on the optimal policy. Section 5 presents

welfare implications of alternative policy experiments, such as uniform economy- or sector-wide

output taxes, and the standard Pigovian carbon tax when the carbon-intensive intermediate input

sectors are oligopolistic and have heterogeneous markups. Finally, Section 6 concludes.

2 Model

Consider a version of the multi-sector neoclassical growth model outlined in Golosov et al.

(2014). Time is discrete and the time horizon is infinite. There is a representative household with

a utility function:

E0

∞∑
t=0

βtU(Ct),

where U is the strictly increasing and concave one-period utility function, Ct is consumption at

period t, β ∈ (0, 1) is the discount factor, and E0 is the mathematical expectation conditioned on

the consumer’s time 0 information.

There are multiple production sectors in the economy: a final goods sector, andM intermediate

goods sectors. The final goods sector produces the consumption and investment good Yt, and each

intermediate goods sector m ∈ {1, ...,M} produces a composite input Xm,t for use in the final

goods sector.
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The feasibility constraint in the final goods sector, denoted as sector 0, is:

Ct +Kt+1 = Yt + (1− δ)Kt, (1)

where Kt is capital stock and δ ∈ (0, 1) is the depreciation rate. The following aggregate production

function describes output in the final goods sector:

Yt = F0,t

(
K0,t, N0,t, {Xm,t}Mm=1 , St

)
, (2)

where K0,t and N0,t are capital and labor used in sector 0 at time t, Xm,t is the intermediate

composite input of sector m ∈ {1, ...,M} used in final-goods production at time t, and St is

the climate variable which affects output. The production function F0,t depends on K0,t, N0,t,

{Xm,t}Mm=1, and St. This model views climate as sufficiently well represented by one variable, St,

which is the amount of carbon in the atmosphere. In studies from natural sciences, for example,

Schneider (1989), National Research Council (2010), and IPCC (2021), the current atmospheric

carbon concentration is considered to be approximating the current climate well. Assume that St

affects final goods production only. The amount of carbon in the atmosphere, St, is measured as

atmospheric carbon concentration above pre-industrial times in billions of tons of carbon (GtC)

units.

The intermediate input sectors each produce a composite input Xm,t for use in the final goods

sector, and there are a finite number of sectors M . These intermediate production factors could be

carbon-intensive industries such as coal (m = 1), steel (m = 2), cement (m = 3), fertilizer (m = 4),

and also zero-emissions sectors, such as renewable energy. I assume that each intermediate input

composite m is produced by Jm number imperfectly substitutable products. Each intermediate

product j = 1, . . . , Jm in sector m has its own technology Fm,j,t to produce the intermediate good

Xm,j,t at time t by employing variable labor input Nvar
m,j,t to produce output, and a fixed cost Ωm,j,t,

paid in units of labor, incurred regardless of the level of output Xm,j,t produced. I proceed to

assume that production remains linear in labor input Nvar
m,j,t:

Xm,j,t = Fm,j,t(N
var
m,j,t) ≥ 0, (3)

with total labor demanded by firm j in sector m is:

Nm,j,t = Nvar
m,j,t +Ωm,j,t. (4)

In each period, production factors are mobile across sectors. The final goods sector is per-

fectly competitive, whereas studying different intermediate goods market structures is this paper’s

objective.

I assume that some intermediate production factors emit carbon to the atmosphere. Let Em,j,t

be the amount of carbon emitted by firm j in sector m at time t. I generalize Golosov et al.’s (2014)

modeling assumption by letting firm-level emissions Em,j,t be a general function of the intermediate
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input Xm,j,t produced by firm j in sector m at time t, instead of assuming that the intermediate

inputs are in one-to-one correspondence with its carbon emissions. The firm-specific emission

function is generalized to allow for a nonlinearities and firm-specific carbon intensities:

Em,j,t = gm,j(Xm,j,t), (5)

where gm,j(Xm,j,t) is a general function that captures the relationship between the intermediate

input Xm,j,t and the emissions Em,j,t for firm j in sector m at time t.

At the sector level, total emissions Em,t are defined as the sum of emissions from all firms in

sector m at time t. Thus, for each sector m, emissions are given by:

Em,t =

Jm∑
j=1

Em,j,t,

=

Jm∑
j=1

gm,j(Xm,j,t).

(6)

Finally, aggregate emissions at the economy-wide level, denoted Et, are defined as the sum of

sector-level emissions across al sectors m = 1, . . . ,M at time t. Thus, aggregate emissions are given

by:

Et =
M∑

m=1

Em,t,

=

M∑
m=1

Jm∑
j=1

gm,j(Xm,j,t).

(7)

The climate variable St is affected by the aggregate carbon emissions, Et, and the carbon cycle.

To describe the evolution of the climate, let S̃t be a function that maps a history of human-made

(anthropogenic) emissions into the current atmospheric concentration level, St. History is defined

to start at the time of industrialization, denoted as T periods before period 0:

St = S̃t (E−T , E−T+1, ..., Et) . (8)

2.1 Additional Assumptions

In this section, I summarize the three key assumptions outlined in Golosov et al. (2014) that

simplify the planning problem analyzed in the next section. Then, I introduce two additional

assumptions that simplify the carbon tax formulation in the presence of imperfect competition in

the energy sector. Golosov et al. (2014) discuss the plausibility of their three assumptions. First,

households have a logarithmic utility function:

Assumption 1 U(C) = log(C).
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Second, they assume that production damages are multiplicative:

Assumption 2 The production technology can be represented as:

F0,t

(
K0,t, N0,t, {Xm,t}Mm=1 , St

)
= [1−D(St)]F̃0,t

(
K0,t, N0,t, {Xm,t}Mm=1

)
, (9)

where 1−D(St) = exp[−γt(St− S̄)] with S̄ being the pre-industrial atmospheric CO2 concentration,

and γt is the marginal damage measured as a share of GDP per marginal unit of carbon in the at-

mosphere assumed to be constant, and before damages production function F̃0,t is strictly increasing

and strictly concave in all its inputs K0,t, N0,t, and Et and it exhibits constant returns to scale.

Third, they assume a simplified carbon cycle:

Assumption 3 The function S̃t is linear with the following depreciation structure:

St − S̄ =

t+T∑
s=0

(1− ds)Et−s,

where ds ∈ [0, 1] for all s and T denotes the number of periods since industrialization and Et−s

follows equations (6) and (7).

The fraction 1 − ds represents the amount of carbon left in the atmosphere s periods in the

future. A three-parameter family determines the depreciation structure, where (i) ψL is the share

of carbon emitted into the atmosphere that stays in it forever; (ii) 1 − ψ0 is the share of the

remaining emissions exiting the atmosphere immediately, and (iii) ψ is the geometric decay rate of

the remaining share of emissions. This parameterization corresponds to a linear system with the

depreciation rate at horizon s given by:

1− ds = ψL + (1− ψL)ψ0(1− ψ)s. (10)

Golosov et al. (2014) show that this depreciation structure is consistent with the existence of

two “virtual carbon stocks” S1 (the part that remains in the atmosphere forever) and S2 (the part

that depreciates at rate ψ), with S1,t = S1,t−1 + ψLEt and S2,t = ψS2,t−1 + ψ0(1 − ψL)Et, and

St = S1,t +S2,t. Golosov et al. (2014) use these three assumptions to obtain a closed-form solution

to the optimal aggregate SCC to output ratio. This expression simplifies the computation of the

model. I introduce two additional assumptions as an extension to the Golosov et al. (2014) model

and yield simplifiable intermediate goods markup formulations:

Assumption 4 The intermediate goods sectors are imperfectly competitive and in differing de-

grees. Each sector m’s intermediate good composite production combines imperfectly substitutable

intermediate goods j in the sector using a constant elasticity of substitution (CES) technology with

an elasticity of substitution parameter, ηm, greater than one. So, the monopoly problem of each

intermediate good producer is well-defined.
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Assumption 5 Each intermediate goods sector m’s market structure is a Cournot oligopoly and

in each sector m a finite number of firms j = 1, . . . , Jm produces intermediate inputs to a CES

intermediate good composite production function:

Xm,t =

 Jm∑
j=1

κm,jX
ηm−1
ηm

m,j,t


ηm

ηm−1

, (11)

where κm,j is the share parameter of firm j in sector m good production and
∑Jm

j=1 κm,j = 1.

Following Atkeson and Burstein (2008), I assume that the intermediate good is small compared

to the entire economy, and none of the firms considers the influence of its production decision on

the final goods production (or the general price level). Nevertheless, each producer j is sufficiently

large within each sector m so that it is aware of its influence on sectoral composite good Xm,t (and

the intermediate sector price composite pm,t).

2.2 The Planning Problem

The social planner’s problem is to maximize the representative household’s discounted lifetime

expected utility subject to technology, feasibility, and carbon cycle constraints of the economy. The

social planner’s problem is:

max{
Ct,Kt+1,N0,t,{Xm,t,{Nm,j,t,Em,j,t}Jmj=1}

M

m=1
,Et,St,Yt

}∞

t=0

E0

∞∑
t=0

βtU(Ct)

subject to (1), (2), (3), (4) (5), (6), (7), (8), (11), and Nt = N0 +
∑M

m=1

∑Jm
j=1Nm,j,t, where Nt is

the inelastic and exogenous labor supply at period t (normalized to unity). Importantly, the social

planner accounts for the climate externality in the planning problem.

2.3 The Social Cost of Carbon

Following Hassler, Krusell, and Smith (2016), I define the social cost of carbon (SCC) as the

marginal externality damage of carbon emissions, keeping constant behavior in the given allocation.

If one further assumes that the saving rate is constant (which does not tend to vary so much over

time in the data), then the SCC expression simplifies significantly.

Assumption 6 The planner’s solution yields a constant saving rate s ∈ (0, 1) over time.

Proposition 1 of Golosov et al. (2014) shows under Assumptions 1-3 and 6, the SCC simplifies be

a constant fraction of aggregate output:

SCCm,j,t

Yt
= γ̄t

(
ψL

1− β
+

(1− ψL)ψ0

1− (1− ψ)β

)
. (12)

I provide the full derivation of equation (12) in Supplementary Appendix B.1.
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The optimal SCC (OSCC), denoted by Λm,j,t, is the marginal external damage of a unit of

carbon emissions from firm j in sector m evaluated at the optimal allocation and is equal to the

marginal external damage from a unit of carbon emissions. Let Λ̂m,j,t denote the optimal SCC

to output ratio, or Λ̂m,j,t ≡ Λm,j,t/Yt. Finally, since aggregate emissions are the sum of firm-level

emissions, Λm,j,t is equal across all firms and sectors.

2.4 Decentralized Equilibrium

2.4.1 Consumers

The representative individual solves the problem:

max
{Ct,Kt+1}∞t=0

∞∑
t=0

βt log(Ct)

subject to
∞∑
t=0

qt(Ct +Kt+1) =

∞∑
t=0

qt((1 + rt − δ)Kt + wtNt + Tt) + Π,

where rt is the net rental rate of capital at time t, wt is the wage rate at time t, Nt is the inelastic

labor supply at time t, Tt is the government transfer at time t, Π is the present value of all

production sectors’ profits from the future, and qt are the Arrow-Debreu prices (i.e., probability-

adjusted state-contingent prices of the consumption good) at time t.

2.4.2 Producers

All output and input markets are assumed to be competitive. The representative firm in the

final good sector solves the following:

Π0 ≡ max{
Yt,Kt,N0,t,{Xm,t,{Xj,t}Jmj=1}

M

m=1

}∞

t=0

∞∑
t=0

qt

[
Yt − rtKt − wtN0,t −

M∑
m=1

pm,tXm,t

]
,

subject to nonnegativity constraints and technology constraints (9) and (11), where the price pm,t is

the price of the intermediate sector composite at time t, and Π0 is the present value of all maximized

profits of the final-goods producer from the future. The cost-minimization of final goods producer

0 implies that:
pm,j,t

pm,t
= κm,jX

− 1
ηm

m,j,tX
1

ηm
m,t , (13)

where pm,j,t is the price of intermediate producer j in sector m at time t and the intermediate

sector composite price pm,t is the CES aggregator of the intermediate producers’ prices at time t

for every sector m:

pm,t =

 Jm∑
j=1

κηmm,jp
1−ηm
m,j,t

 1
1−ηm

.
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The first-order condition of the final goods producer 0 and the intermediate sector composite price

index implies that pm,tXm,t =
∑Jm

j=1 pm,j,tXm,j,t.

The problem of the producer j in sector m is to maximize the discounted value of its profits

given the per-unit tax τm,j,t on its output given its fixed costs Ωm,j,t:

Πm,j ≡ max
{Xm,j,t,Nm,j,t,Nvar

m,j,t}∞t=0

∞∑
t=0

qt [(pm,j,t − τm,j,t)Xm,j,t − wtNm,j,t] ,

subject to nonnegativity, intermediate production technologies (3), (4), intermediate sector m com-

posite production technology (11) constraints, and the inverse input j in sector m demand in equa-

tion (13). Here, Πm,j is the present value of all maximized profits of the producer j in sector m

from the future. Total profits are Π = Π0 +
∑M

m=1

∑Jm
j=1Πm,j .

In the absence of taxes, the first-order condition of the producer j in sector m and inverse input

j demand function (13) implies:

pm,j,t =
σm(sm,j,t)

σm(sm,j,t)− 1

wt

F ′
m,j,t(N

var
m,j,t)

,

where F ′
m,j,t is the marginal product (i.e., the derivative) of the producer j’s production function

at time t with respect to its variable input, wt/F
′
m,j,t(N

var
m,j,t) is the marginal cost of input j pro-

duction, and σm(sm,j,t) is the price elasticity of sector m input j demand, expressed as a function

of producer j’s sector m sales share sm,j,t = pm,j,tXm,j,t/pm,tXm,t = pm,j,tXm,j,t/
∑Jm

j=1 pm,j,tXm,j,t

and elasticities following Atkeson and Burstein (2008). Specifically, σm(sm,j,t) has the following

expression:

σm(sm,j,t) =

[
1

ηm
(1− sm,j,t) +

Xm,t/pm,t

|∂Xm,t/∂pm,t|
sm,j,t

]−1

, (14)

where
Xm,t/pm,t

|∂Xm,t/∂pm,t| is the absolute value of inverse price elasticity of sector m composite demand. In

other words,
σm(sm,j,t)

σm(sm,j,t)−1 is the markup of the intermediate producer j in sector m. Supplementary

Appendix B provides a detailed derivation of the expression for σm(sm,j,t) given by equation (14).

2.4.3 Market Clearing

The final goods market clears:

Yt = Ct +Kt+1 − (1− δ)Kt.

The labor market clears:

Nt = N0 +

M∑
m=1

Jm∑
j=1

Nm,j,t.

Finally, the intermediate good markets clears by Assumption 5.
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2.4.4 Government

The government taxes output, Xm,j,t of the intermediate producers at different rates, τm,j,t, and

these taxes target correcting both the climate externality and the market distortion. The effective

tax rate on the intermediate producer j in sectorm is a function of the marginal externality damage

from input j in sector m, the input j price, and the price elasticity of input j demand, as shown in

equation (15). Moreover, the effective firm-specific tax rate, τm,j,t, could be negative, i.e., a subsidy,

which would be the case when the marginal externality damage is smaller than the marginal social

cost of the market distortion.

The government collects the tax proceeds from the intermediate producers and rebates the

representative consumer with a lump-sum, Tt. In the case that the government’s net tax proceeds

from the intermediate producers are negative, i.e., the government subsidizes the intermediate

producers, the government collects the negative tax proceeds from the representative consumer.

The government runs a balanced budget at time-0:

∞∑
t=0

qtTt =

∞∑
t=0

qt

M∑
m=1

Jm∑
j=1

τm,j,tXm,j,t,

where the left-hand side is the time-0 sum value of the lump-sum transfers to the representative

consumer, and the right-hand side is the time-0 sum value of tax proceeds collected from all

intermediate producers in all sectors m at time t.

2.4.5 Market Structure

Golosov et al. (2014) assume that all production sectors are perfectly competitive. When

the climate externality is the only distortion, the optimal policy is to tax carbon emissions at

the marginal externality damage at the optimal output level, i.e., the OSCC, Λt, known as the

Pigouvian tax.

However, as argued in the introduction, imperfect competition is a more realistic market struc-

ture assumption for carbon-intensive production sectors. Under an imperfectly competitive carbon-

intensive intermediate production sectors, there will be two different distortions in each producer’s

optimal decision: a climate externality and a market distortion, and two policy instruments will

be needed to correct these two distortions, known as the Tinbergen rule, named after Tinbergen

(1952).

2.5 Optimal Output Tax

Unless environmental and competition regulators operate harmoniously, a regulator is restricted

with a constrained policy tool to improve aggregate welfare. Each carbon-intensive and imperfectly

competitive intermediate sector subject society to two costs. The first is the external costs asso-

ciated with climate change, and the second is the costs resulting from the output restriction. The
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simple Pigouvian tax, while reducing the climate externality, also increases the welfare loss result-

ing from reduced production. Thus, the net social welfare effect is uncertain, but likely negative.

The optimal output tax will combine the policies that address each distortion individually: the

Pigouvian tax and the output subsidy. I formally show this result by finding the optimal output

tax in the presence of imperfect competition in the intermediate sector m.

Accounting for the pricing power changes the carbon tax formulation when competition policy

is constrained. Let τ∗m,j,t denote the optimal output tax on intermediate producer j in sector m.

The optimal output tax, τ∗m,j,t is firm-specific and depends on the marginal externality damages

from input j in sector m, the input j price, and the price elasticity of input j demand:

τ∗m,j,t =
dEm,j,t

dXm,j,t
Λm,j,t −

pm,j,t

σm(sm,j,t)
, (15)

where σm(sm,j,t) is the price elasticity of sector m input j demand defined in equation (14). Thus,

the optimal output tax is always smaller than the Pigouvian tax and can even be negative, i.e., a

subsidy, in the presence of market power.

Proposition 1 Suppose that τm,j,t follows equation (15) and that the tax proceeds and firm profits

are rebated lump-sum to the representative consumer. Then, the oligopoly equilibrium allocation

coincides with the solution to the social planner’s problem.

Proof.

To derive the optimal output tax formula, I solve for the first-order conditions of the social

planner’s problem and the oligopolistic producer’s problem with respect to variable input choice

for each firm j in sector m at time t. Then evaluate the oligopolistic producer’s first-order condition

at the optimal allocation quantities implied by the social planner’s problem. Under Assumptions

1, 2, 3, and 6 the planner’s first-order condition simplifies to:

dXm,j,t

dNvar
m,j,t

[
∂Yt
∂Xm,t

∂Xm,t

∂Xm,j,t
+
dEm,j,t

dXm,j,t
Λm,j,t

]
=

∂Yt
∂N0,t

. (16)

Under Assumption 4, the oligopolistic producer’s first-order condition with respect to variable

input choice is:
dXm,j,t

dNvar
m,j,t

[
pm,j,t

σm(sm,j,t)− 1

σm(sm,j,t)
− τm,j,t

]
=

∂Yt
∂N0,t

. (17)

In order to obtain the optimal output tax τ∗m,j,t, I evaluate the first-order condition of the

sector m producer j’s problem with respect to its variable labor input choice, equation (17), at the

allocation quantities implied by the social planner’s problem, i.e., when the first-order condition of

the social planner’s problem with respect to the variable labor input employed by sectorm producer

j is satisfied, equation (16).

The first-order condition of the social planner’s problem with respect to the variable labor input

employed by sector m producer j is the same as the first-order condition of the sector m producer

j’s problem with respect to its variable labor input choice when τm,j,t is equal to the optimal tax
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formula given by equation (15):

τ∗m,j,t =
dEm,j,t

dXm,j,t
Λm,j,t −

pj,t
σm(sm,j,t)

,

where all the variables are evaluated at the optimal allocation quantities implied by the social

planner’s problem, including σm(sm,j,t) given by equation (14). □

The optimal tax on oligopolistic carbon-intensive producers is a linear combination of the opti-

mal tax on competitive producers and the optimal output subsidy on oligopolistic producers with

zero carbon emissions. The optimal tax on competitive producers is
dEm,j,t

dXm,j,t
Λm,j,t, as shown in

Golosov et al. (2014), where
dEm,j,t

dXm,j,t
is marginal carbon emissions from a unit of sector m input j

production. The optimal output subsidy on oligopolistic producers in the absence of carbon exter-

nality is equal to
pm,j,t

σm(sm,j,t)
, where both pm,j,t and σm(sm,j,t) are evaluated at the optimal allocation

quantities implied by the social planner’s problem. It can be shown that this is the optimal output

subsidy by considering the first-order condition with respect to sector m producer j’s variable labor

input choice. Absent the carbon externality, the marginal external damages from a unit of sector

m input j production term, i.e.,
dEm,j,t

dXm,j,t
Λm,j,t, is absent from the planner’s first-order condition,

equation (16). Thus, the optimal output tax on an oligopolistic sector m producer j should equate

its first-order condition (17) with the planner’s first-order condition (16).

3 Quantitative Analysis

In this section, I completely characterize the generalized multi-sector model used for the quan-

titative analysis in Golosov et al. (2014) described above. Assume that Assumptions 1, 2, 3, 4, 5,

and 6 hold. I present quantitative model results for a baseline calibration. I explain the calibration

process of the new components of my extension of the Golosov et al.’s (2014) model to match the

structure of major carbon-intensive intermediate production sectors in the US in 2010.

Assume that there are M intermediate production sectors each with differing degrees of carbon

intensity. Further, suppose that within each sector there are Jm firms that produce imperfectly

substitutable types of the intermediate production factor, which is a reasonable assumption given

these intermediate sectors face varying qualities of goods and high transportation costs. Within

in sector m type j producer produces its output using the following constant returns to scale

technology:

Xm,j,t = χm,j,tN
var
m,j,t, (18)

where χm,j,t is the exogenous labor productivity of the producer j in sector m that grows at a

constant rate gχm,j and Nvar
m,j,t is the variable labor input used in j’s production. In addition to the

variable labor input, each producer j in sector m faces a fixed exogenous production cost, denoted

in units of labor, Ωm,j,t, that it has to pay in order to produce, regardless the level of output
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it produces. The fixed costs represent the overhead that must be paid regardless of the output

level, e.g., maintenance of physical plants, regulatory compliance, and upfront capital recovery. In

oligopolistic sectors, these costs can explain limited firm entry. Thus, the total labor demand of

producer j in sector m is given by:

Nm,j,t = Nvar
m,j,t +Ωm,j,t. (19)

Deviating further from Golosov et al. (2014), I assume that carbon emissions from each inter-

mediate input production are a general, and potentially nonlinear, function of total production of

the intermediate input Xm,j,t and the carbon intensity of the production process θm,j,t. The carbon

emissions from the production of intermediate input j in sector m are given by:

Em,j,t = θm,j,tX
ζm,j

m,j,t, (20)

where ζm,j is the degree of nonlinearity in the carbon emissions function. This functional gen-

eralization allows for the possibility that the carbon emissions from production are not linear in

output, which is a reasonable assumption given that the carbon emissions from production can

be affected by the technology used and the scale of production. Moreover, it harbors the Golosov

et al. (2014) model as a special case, where both θm,j,t and ζm,j are equal to unity for all m and j.

Additionally, if θm,j,t = 0, then the production process is a zero carbon emissions process, which is

the case for renewable energy sources. Finally, I assume that the carbon intensity of the production

process θm,j,t is time-varying, to reflect the fact that the carbon intensity of production processes

can change over time due to technological progress or changes in the energy mix used in production.

The sector composite Xm,t that enters the final goods production is a CES aggregate of the

different types of products in sector m as outlined in Assumption 4, equation (11). The final-goods

production function is of Cobb-Douglas specification:

Yt = exp{−γt(St − S̄)}A0,tK
α
t N

1−α−
∑M

m=1 νm
0,t

M∏
m=1

Xνm
m,t,

where A0,t is the exogenous total factor productivity (TFP) in the final-goods sector that grows at

a constant rate g0. The Cobb-Douglas production function is a special case of the CES production

function with price elasticity of demand equal to unity. Labor employed by all producers has to sum

up to the exogenous labor supply level Nt. Finally, I assume that there is full capital depreciation,

given that each period is a decade.

The Cobb-Douglas production function and complete capital depreciation assumptions deliver

a constant saving rate under optimality conditions, which was the assumption behind the OSCC

expression derived in equation (12). Next, I characterize the solutions to the planning problem and

three types of market equilibria.
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3.1 The Planning Problem

Given the full capital depreciation assumption and the constant SCC-to-output ratio result, I

can obtain a numerical solution to the planner’s problem defined in Supplementary Appendix B.3,

pinned down by the first-order condition with respect to the variable labor input used in sector

m intermediate input j production, Nvar
m,j,t, as formulated in equation (16). Unlike Golosov et

al.’s (2014) solution method, there is no closed-form solution for the optimal paths when I generalize

the carbon emissions function to be nonlinear in output. Given the functional assumptions made,

the optimal paths for each sector m = 1, . . . ,M intermediate input j = 1, . . . , Jm production

simultaneously satisfy:

χm,j,t

 νmκm,j

X
ηm−1
ηm

m,t X
1

ηm
m,j,t

− θm,j,tζm,j
SCCm,j,t

Yt
X

ζm,j−1
m,j,t

 =
1− α−

∑M
m=1 νm

N0,t
, (21)

where SCCm,j,t is the social cost of carbon in sector m and type j and the ratio Λ̂m,j,t ≡ SCCm,j,t

Yt

is the ratio is a constant function of the exogenous parameters, as shown in equation (12).

The generalization of the carbon emissions function to be potentially nonlinear in output does

not allow for a closed-form solution for the optimal paths of intermediate input productionXm,j,t, as

in Golosov et al.’s (2014). However, I can obtain a numerical solution for the optimal paths similar

to the solution method used in Golosov et al.’s (2014). The optimal paths of each intermediate

sector m = 1, . . . ,M good j = 1, . . . , Jm production satisfies:

Xm,j,t = ξ∗m,j,tX
−(ηm−1)
m,t , (22)

where ξ∗m,j,t for the efficient allocations are given by:

ξ∗m,j,t ≡

(
νmκm,jχm,j,tN0,t

1− α−
∑M

m=1 νm + χm,j,tΛ̂m,j,tN0,tθm,j,tζm,jX
ζm,j−1
m,j,t

)ηm

,

where θm,j,tζmX
ζm,j−1
m,j,t is the marginal carbon emissions from production of intermediate input j in

sector m at time t. Even though ξ∗m,j,t is a function of the endogenous path of firm-specific output

Xm,j,t, I can obtain a numerical solution for the optimal paths of intermediate input production

Xm,j,t, as follows.

First, I guess the paths of total labor demand Nm,j,t of each producer j in sectorm and the labor

demand N0,t of the final goods sector. Specifically, I guess a constant path of final goods sector

labor demand N0,t at 70% of the exogenous aggregate labor supply level N̄ , and a constant path of

total labor demand Nm,j,t of each producer j in sector m at (1− 0.7) · N̄/(M ·max{J1, . . . , JM}),
where M is the number of intermediate sectors and Jm is the number of producers in sector m.

Then, I calculate the firm-specific ξ∗m,j,t as a function of the guessed Xm,j,t for each producer j in

sector m implied by the guessed values of Nm,j,t and N0,t, and the exogenous parameters at time t.
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Next, I obtain sector-level output Xm,t by aggregating the firm-specific outputs Xm,j,t implied

by equation (22) across all producers j in sector m and period t by using the firm-specific ξ∗m,j,t

obtained in the last step. Using the sector-level output Xm,t, I obtain updated values of firm-

specific outputs Xm,j,t for each producer j in sector m by using equation (22) and further update

the paths of variable labor input Nvar
m,j,t for each producer j in sector m using the updated firm-

specific outputs Xm,j,t and the exogenous fixed costs Ωm,j,t and the labor used in the final goods

sector N0,t.

Once I obtain the updated paths of labor inputs for every producer-sector-time combination, I

compare the updated paths of labor inputs Nm,j,t and N0,t with the guessed paths. If the paths

are not sufficiently close to each other, I update the guessed paths of Nm,j,t and N0,t by taking a

convex combination of the guessed and updated paths, and repeat the process until convergence.

3.2 Decentralized Equilibrium

In a decentralized equilibrium, the intermediate producer j in sector m chooses its path of

variable labor input Nvar
m,j,t to maximize its profits, given the path of taxes {τm,j,t}∞t=0, which are

set exogenously by the government. Notably, the intermediate producers do not internalize their

influences over the final goods production possibilities through the effect of their accumulated

emissions on climate change. First, I describe the competitive equilibrium, as implemented in

Golosov et al. (2014), and then consider the case of equilibrium with an oligopolistic intermediate

production sectors.

3.2.1 The Competitive Equilibrium

In a competitive equilibrium, each producer is a price taker. Specifically, intermediate good

producers do not internalize the pricing power they have through their control over their own

and sectoral outputs. Supplementary Appendix B.4.1 gives the complete competitive equilibrium

definition.

The equilibrium paths of each intermediate sector m = 1, . . . ,M good j = 1, . . . , Jm production

again solves each producer’s first order condition with respect to its variable labor input choice

equation (23), but unlike the first order condition in equation (21), the SCC term is not present in

the first order condition. The first order condition with respect to the variable labor input Nvar
m,j,t

of producer j in sector m is given by:

χm,j,t

 νmκm,j

X
ηm−1
ηm

m,t X
1

ηm
m,j,t

− τm,j,t

Yt

 =
1− α−

∑M
m=1 νm

N0,t
, (23)

where τm,j,t is the tax on carbon emissions from production of intermediate input j in sector m at

time t.

There is a closed-form solution for the unregulated competitive equilibrium pinned down by the

first-order condition with respect to variable labor input Nvar
m,j,t choice of each producer j in sector
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m given by equation (23). The equilibrium paths of each intermediate sector m = 1, . . . ,M good

j = 1, . . . , Jm production satisfies:

Xm,j,t = ξCE
m,j,tX

−(ηm−1)
m,t ,

where ξCE
m,j,t for the competitive equilibrium allocations are given by:

ξCE
m,j,t ≡

(
νmκm,jχm,j,tN0,t

1− α−
∑M

m=1 νm + χm,j,tN0,tτ̂m,j,t

)ηm

,

where τ̂m,j,t = τm,j,t/Yt is the ratio of the tax on carbon emissions from production of intermediate

input j in sector m to aggregate output at time t. For the unregulated competitive equilibrium, the

tax on carbon emissions from production of intermediate input j in sector m is zero, i.e., τ̂m,j,t = 0.

The ξCE
m,j,t is a function of exogenous parameters. I obtain the solution by guessing the paths of

total labor demand Nm,j,t of each producer j in sector m and the labor demand N0,t of the final

goods sector. Given these guesses, I solve for the paths of ξCE
m,j,t, Xm,t, Xm,j,t, and N

var
m,j,t of each

producer j. Using the solution for the path of Nm,j,t, I obtain update the paths of Nm,j,t and N0,t.

I check the convergence of the solution by comparing the updated and guessed paths of Nm,j,t and

N0,t. If the paths are not close enough, I update the guessed paths of Nm,j,t and N0,t by taking a

convex combination of the guessed and updated paths and repeat until convergence.

3.2.2 The Oligopoly Equilibrium

In an oligopoly equilibrium, each intermediate producer j in sector m internalizes its influence

over the sectoral composite and composite price but not the final output and the general price level.

The definition of the complete oligopoly equilibrium is available in Supplementary Appendix B.4.2.

Importantly, the oligopolistic firms perceive their influence over their individual good price,

pm,j,t given by equation (13), and the sectoral composite price pm,t, which is equal to sectoral

output’s marginal product in final output production, given by:

pm,t = νm
Yt
Xm,t

,

though their influence over the sectoral output Xm,t level. The oligopolistic firms do not internalize

their influence over the final output and price levels. Intermediate good producing firms choose their

paths of variable labor input Nvar
m,j,t to maximize their profits, given the path of taxes {τm,j,t}∞t=0,

which are set exogenously by the government. The oligopolistic producer j in sector m’s first order

condition with respect to its variable labor input Nvar
m,j,t is given by:

χm,j,t

 νmκm,j

X
ηm−1
ηm

m,t X
1

ηm
m,j,t

σm(sm,j,t)− 1

σm(sm,j,t)
− τm,j,t

Yt

 =
1− α−

∑M
m=1 νm

N0,t
, (24)
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where σm(sm,j,t) is the price elasticity of demand for the intermediate input j in sector m given by

equation (14), and sm,j,t is the sales share of producer j in sector m given by:

sm,j,t =
pm,j,tXm,j,t∑Jm
j=1 pm,j,tXm,j,t

=
pm,j,tXm,j,t

pm,tXm,t
.

Unless the oligopolistic firms are symmetric, i.e., they have the same labor productivity χm,j,t

and the share parameters κm,j , they will have different sales shares sm,j,t. Unlike the competitive

equilibrium, the oligopolistic firms’ first order condition with respect to the variable labor input

Nvar
m,j,t of producer j in sector m is given by equation (24), which includes an inverse markup term

σm(sm,j,t)−1
σm(sm,j,t)

that prevents a simple closed-form solution for the oligopolistic equilibrium. However,

I can obtain a numerical solution for the oligopoly equilibrium paths similar to the solution method

I utilize to solve the planning problem in section 3.1. The oligopoly equilibrium paths of each

intermediate sector m = 1, . . . ,M good j = 1, . . . , Jm production satisfies:

Xm,j,t = ξOm,j,tX
−(ηm−1)
m,t ,

where ξOm,j,t for the oligopoly equilibrium allocations are given by:

ξOm,j,t ≡

(
νmκm,jχm,j,tN0,t

1− α−
∑M

m=1 νm + χm,j,tN0,tτ̂m,j,t

σm(sm,j,t)− 1

σm(sm,j,t)

)ηm

,

where
σm(sm,j,t)−1
σm(sm,j,t)

is the inverse markup term that depends on the endogenous sales share sm,j,t of

producer j in sector m at time t.

I can obtain a numerical solution for the oligopolistic equilibrium similar to the optimal planning

problem solution. In particular, I obtain a numerical solution for the oligopolistic equilibrium by

guessing the paths of total labor demand Nm,j,t of each producer j in sector m and the labor

demand N0,t of the final goods sector. Using the guesses, I obtain sector-level output Xm,t by

aggregating the firm-specific outputs Xm,j,t implied by the guesses and the sales shares sm,j,t for

each producer j in sector m using the fact that:

sm,j,t = κm,j

(
Xm,j,t

Xm,t

) ηm−1
ηm

,

and the demand elasticities σm(sm,j,t) and the firm-level markups implied by the demand elastic-

ities. Then, I calculate the firm-specific ξOm,j,t as a function of the guessed Xm,j,t and markup for

each producer j in sector m implied by the guessed values of Nm,j,t and N0,t, and the exogenous

parameters at time t. The remainder of the solution algorithm is similar to the one I use to solve

the optimal planning problem in section 3.1.
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3.3 Calibration

Given the model structure and the parametric assumptions presented, next I describe the cal-

ibration of the structural model parameters. I calibrate the model to match the US economy in

2017. One period in the model corresponds to a decade, so the model is calibrated to match the

US economy in 2017, which is the earliest year for which I have the sectoral concentration data.

As the carbon-intensive sectors, I consider the top five carbon-intensive four digit NAICS sec-

tors in the US economy with output shares greater than 0.1 percent and are not the utilities sector

(i.e., NAICS codes that start with 22) in 2017, which are: Coal mining (2121), Cement manufac-

turing, Ready-mix concrete manufacturing, Concrete pipe, brick, and block manufacturing, Other

concrete product manufacturing (3273), Fertilizer manufacturing, Pesticide and other agricultural

chemical manufacturing (3253), Pulp mills, Paper mills, Paperboard mills (3221), Petroleum re-

fineries, Asphalt paving mixture and block manufacturing, Asphalt shingle and coating materials

manufacturing, Other petroleum and coal products manufacturing (3241). I exclude the utilities

sector, which is the most carbon-intensive sector in the US economy, because of its regulated natural

monopoly structure.

Table 1 describes key sectoral parameters used in the calibration of the model for the top five

carbon-intensive sectors in the US economy.1 In Table 1, the columns are labeled by NAICS codes

and ordered by sectoral carbon emission intensities in 2017, with the most carbon-intensive sector

(Coal mining, NAICS 2121) as the left-most column, followed by Cement manufacturing (3273),

Fertilizer manufacturing (3253), Pulp and paper mills (3221), and Petroleum refineries (3241).

The top five sectors I consider in my model accounted for 37.2 percent of the aggregate carbon

emissions from the US economy on average between 2010 and 2023. Moreover, the long-term average

of GHG emissions from the US economy relative to the global GHG emissions is approximately 14.6

percent.2 I present my calculations to obtain these fractions in detail in Supplementary Appendix

C.4. I next describe the construction of the dataset containing the sectoral economic statistics I

use and how I obtain the sectoral parameters used in the calibration of the model.

3.3.1 Sectoral Output Shares

In order to calculate the sectoral output shares νm for each sector m = 1, . . . ,M , I use the Bu-

reau of Economic Analysis’s (BEA) Input Output (IO) Use Table dataset for 2017, which provides

the spending on intermediate commodities by each sector. However, the IO Table dataset follows

the industry classification system of the BEA, which does not map one-to-one to the NAICS system.

1The next five carbon-intensive sectors in the US economy, which I do not consider in my model, are: Petrochem-
ical manufacturing, Industrial gas manufacturing, Synthetic dye and pigment manufacturing, Other basic inorganic
chemical manufacturing, Other basic organic chemical manufacturing (3251), Iron and steel mills and ferroalloy man-
ufacturing (3311), Flour milling and malt manufacturing, Wet corn milling, Fats and oils refining and blending,
Soybean and other oilseed processing, Breakfast cereal manufacturing (3112), Plastics material and resin manufac-
turing, Synthetic rubber and artificial and synthetic fibers and filaments manufacturing (3252), Copper, nickel, lead,
and zinc mining, Iron, gold, silver, and other metal ore mining (2122).

2The long-term average of GHG emissions from the US economy relative to the global GHG emissions is calculated
using the data from the OWID (2023) dataset, which provides the GHG emissions data for all countries in the world.
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Table 1: Calibrated parameters by NAICS sector

Parameter 2121 3273 3253 3221 3241

νm 0.002 0.005 0.003 0.004 0.022
Jm 21 136 25 15 16
ηm 4.0 16.2 6.5 7.3 14.2
χ̄m 7.0× 105 5.4× 105 1.6× 106 8.2× 105 4.0× 106

σlogχm 0.60 0.18 0.41 0.30 0.57
gχm 0.09 0.06 0.77 0.84 1.07
θm 3.1× 10−4 2.0× 10−4 1.9× 10−4 1.4× 10−4 1.3× 10−4

Note: The calculations and data sources used to obtain the sectoral parameters are described in detail in the present
sections. Each row reports a sector-specific calibrated parameter: The first row presents the sectoral output shares
νm, the second row presents the effective number of firms Jm in each sector, the third row presents the sectoral
elasticity of substitution parameters ηm, the fourth row presents the average sectoral labor productivity χ̄m, the
fifth row presents the standard deviation of the logged sectoral labor productivity σlogχm , the sixth row presents
the annual growth rate of sectoral labor productivity gχ̄m , and the seventh row presents the average sectoral carbon
intensity θm.Each column corresponds to a different NAICS sector. The sectors are ordered by their carbon emission
intensities in 2017, with the most carbon-intensive sector on the left.

To map the BEA industry classification to the NAICS system, I use the mapping provided by the

BEA (2024a), which maps the BEA codes to the 2017 NAICS codes. I calculate the gross output

of sector m used as intermediates by summing the spending of each sector on intermediate com-

modities, reported under variable name “T001,” with NAICS codes that start with the four-digit

NAICS code of sector m. I obtain aggregate value added, i.e., Gross Domestic Product (GDP), as

the sum of value added across all sectors in the economy, which is reported in the IO Table dataset,

which is reported under label “VAPRO” in the IO Table dataset. Finally to calculate the sectoral

output shares νm, I divide the gross output of sector m used as intermediates by the GDP of the

economy.

The sectoral output shares νm for each sector m = 1, . . . ,M are presented in the first row of

Table 1. There is a negative correlation between the sectoral output shares νm and the carbon

intensity of the sector, i.e., the carbon emissions per dollar of output produced in the sector. Thus,

top carbon-intensive sectors have larger sectoral output shares, indicating that they are the more

important sectors in terms of their contribution to the overall output of the economy.

3.3.2 Effective Sector Size

The industry size parameter, Jm, is calibrated to match the Herfindahl-Hirschmann Index (HHI)

the selected five selected intermediate sectors. HHI is calculated by squaring the market share of

each competing firm in the industry and then summing the resulting numbers. The result can range

from close to zero to 10,000. Increases in HHI indicate a decrease in competition and an increase

in market power. If all firms have an equal share, the reciprocal of the index shows the number of

firms in the industry. When firms have unequal shares, the reciprocal of the index indicates the

“equivalent” number of firms in the industry.

The US Census Bureau (2023) has detailed data on HHI for each NAICS sector in the US
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economy for 2017. I use the 2017 HHI values for the five carbon-intensive sectors I consider in

my model and calculate the effective number of firms in each sector Jm as the reciprocal of the

HHI/10,000. The effective number of firms in each sector Jm is presented in the second row of

Table 1. There is no clear correlation between the effective number of firms in a sector and the

carbon intensity of that sector. In general, the effective number of firms in a sector is low for the

most carbon-intensive sectors, indicating that these sectors are resemble oligopolistic markets with

a few large firms dominating the market.

3.3.3 Average Sectoral Markups

In order to incorporate the oligopolistic structure of the intermediate sectors, I need to calibrate

the average sectoral markups κm,j for each sector m = 1, . . . ,M and firm j = 1, . . . , Jm, which

describe the average degree of market power in the sector. I calculate the sales-weighted average

markups for each sector m using the S&P Global Market Intelligence’s (2023) Compustat dataset,

which provides the financial data for publicly traded firms in the US. The details of the markup

calculations are available in Supplementary Appendix A. Given the average sectoral markups, I

obtain the sectoral elasticity of substitution parameter ηm using the following formula:

ηm =
1

1− 1
µ̄m

, (25)

where µ̄m is the average sectoral markup for sector m.

The average sectoral markups µ̄m are presented in the third row of Table 1. The lower the aver-

age sectoral markup, the more competitive the sector is, and higher the elasticity of substitution ηm

is. The sectors with the highest average sectoral markups among the top ten carbon-intensive sec-

tors are petrochemical manufacturing (3251), coal mining (2121), and stone mining and quarrying

(2123). Again, there is no clear correlation between the average sectoral markups and the carbon in-

tensity of the sector, but carbon intensive sectors have positive profit margins, i.e., markups greater

than unity. I present the history of average sectoral markups µ̄m values used in the calibration of

ηm in Supplementary Appendix C.1.

3.3.4 Average Sectoral Labor Productivity Distribution

I use the average sectoral labor productivity in 2017 as the calibration target for the sectoral

labor productivity χm,j,t of each intermediate sector m = 1, . . . ,M and firm j = 1, . . . , Jm. I

calculate the average sectoral labor productivity using the sectoral value added values from the IO

Table dataset and the sectoral total employment data from the US Census Bureau (2023) dataset

for 2017. In order to calculate the value added for each four-digit NAICS sector, I use the sectoral

value added, the variable “VAPRO,” values from the BEA (2024a) dataset. Once I obtain the value

added for each four-digit NAICS sector, I merge the value added data with the total employment

data from the US Census Bureau (2023) dataset, which provides the total employment for each

four-digit NAICS sector in 2017.
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I calculate the base year average sectoral labor productivity χ̄m for each four-digit NAICS sector

in 2017 by dividing the total value added of the sector by the total employment of the sector in 2017.

The average sectoral labor productivity χ̄m for each sector m = 1, . . . ,M is presented in the fourth

row of Table 1. In order to calculate the dispersion of the logarithm of sectoral labor productivity

σ2logχm
, I use the Compustat dataset. I calculate firm-specific annual value added by subtracting the

cost (COGS) of goods sold from the total revenue (REVT) of each firm in the Compustat dataset.

Then, I calculate firm-specific annual labor productivity by dividing the firm-specific annual value

added by the total employment (EMP) of the firm reported in the Compustat. Finally, I calculate

the standard deviation of the logarithm of firm-specific annual labor productivity for each four-digit

NAICS. The sectoral productivity dispersion σ2logχm
is presented in the fifth row of Table 1.

Given the effective number of firms in each sector Jm I obtained by inverting the sectoral HHI, I

simulate initial labor productivity level χm,j,t for each firm j = 1, . . . , Jm in a sector m by drawing

from a log-normal distribution with mean equal to the average sectoral labor productivity χ̄m and

standard deviation equal to σ2logχm
, i.e., logχm,j,0 ∼ N (log(χm), σ2logχm

). Overall, average sectoral

labor productivity χ̄m displays a low positive correlation with the carbon intensity of the sector,

but theire is no clear correlation between the sectoral labor productivity dispersion σ2logχm
and the

carbon intensity of the sector.

3.3.5 Average Sectoral Labor Productivity Growth Rate

I obtain the historical sectoral labor productivity indices from the BEA (2024b) dataset, which

is published jointly by the BEA and the Bureau of Labor Statistics (BLS). The ILPA dataset

provides annual labor productivity indices for Production Account sectors, which use the BEA

sector codes. Moreover, the most disaggregated sector classification in the BEA (2024b) dataset is

at the three-digit BEA code level.

I present the historical annual sectoral labor productivity growth rates for the three-digit Pro-

duction Account (BEA) sectors that contain the five most carbon-intensive sectors in Supplemen-

tary Appendix C.2. The BEA industry descriptions and their Production Account codes of the

five modeled sectors are: Mining, except for oil and gas (212), Nonmetallic mineral products (327),

Chemical products (325), Paper products (322), Petroleum and coal products (324).

For calibration of the sectoral labor productivity growth rate, I use the average annual growth

rate of each sector’s labor productivity from 2000 to 2023. I present the average annual growth

rates of the sectoral labor productivity in the sixth row of Table 1. There is a strong positive

correlation between the sectoral labor productivity growth rate and the carbon intensity of the

sector.

3.3.6 Carbon Intensity

In the baseline calibration, I assume that the carbon intensities of each intermediate sector

m = 1, . . . ,M are constant over time and across firms, i.e., θm,j,t = θm for all j, t. I set the carbon

intensities of the five carbon-intensive sectors to match the average carbon intensity of the sector in
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2017, which I calculate using emissions data from the US Environmental Protection Agency (2024)

and value added data from the BEA (2024a) datasets. The units of the carbon intensity θm are

metric tons of carbon (mtC) per dollar of value added produced in the sector.

Using the facility-level carbon emissions data from the US Environmental Protection Agency

(2024) dataset, which assigns a six-digit 2007 NAICS code to each facility, I calculate the aggregate

carbon emissions of every four-digit NAICS sector and year represented in the sample. As I explain

further below, I normalize the sectoral carbon emissions - output elasticity parameter ζm to 1, which

implies that the sectoral carbon intensity θm is equal to the average carbon emissions per dollar

of output produced in the sector in 2017. The GHGRP dataset spans 129 four-digit 2007 NAICS

sectors and 14 years from 2010 to 2023. Importantly, GHGRP reports metric tons of carbon dioxide

(CO2) equivalent emissions, and I convert the reported emissions to metric tons of carbon (GtC)

by multiplying the reported emissions by 12/44.3 I use the value added data from the BEA (2024a)

dataset, as I described earlier, which is mapped to the 2017 NAICS codes. I use the concordance

provided between the 2007 and 2017 NAICS codes by the US Census Bureau (2017) to map the

2007 NAICS codes to the 2017 NAICS codes.

I merge the emissions data from the US Environmental Protection Agency (2024) dataset with

the value added data from the BEA (2024a) dataset to obtain the average carbon intensity of each

four-digit NAICS sector in 2012, 2017, and 2022. Finally, I calculate the average carbon intensity

of every large enough carbon emission reporting intermediate sector in 2017 by dividing the total

carbon emissions of the sector by the total value added of the sector in 2017. I sort the four-digit

NAICS sectors by their average carbon intensity in 2017 and select the top five carbon-intensive

sectors I listed above. The average carbon intensities of the top five carbon-intensive sectors in

2017 are presented in the seventh row of Table 1 in units of metric tons of CO2 per billion dollar

of value added.

3.3.7 Other Structural Parameters

I summarize the calibration strategy for the remaining structural parameters of my model{
α, β, δ,N, g0, γ̄, ψ0, ψL, ψ,

{
ζm, {Ωm,j}Jmj=1

}M

m=1

}
, the initial conditions {K0, A0,0, S̄, S1,−1, S2,−1},

and other calibration targets in Table 2. I provide explanations for the calibration of each parameter

in the following paragraphs.

I follow the calibration of Golosov et al. (2014) for the parameters α, β, and δ. Full depreciation

of capital and logarithmic utility function assumptions result in the crucial constant optimal social

cost of carbon result. Unlike Golosov et al. (2014), I calibrate the global average annual TFP growth

rate from 2007 to 2017 to 0.0073. I calculate this growth rate as the GDP-weighted global average

of the country-level annual TFP growth rates by combining real GDP from the World Bank’s

World Development Indicators, WDI (2024), reported as “GDP, PPP (constant 2021 international

$),” and TFP from World Bank’s (2021) Cross-Country Database of Productivity, reported as

3The conversion factor is the ratio of the molecular mass of carbon (12 atomic mass units, or amu) to the molecular
weight of carbon dioxide (44 amu).
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Table 2: Baseline calibration of aggregate parameters

Parameter Description Value Source

α Output share of capital 0.3 Golosov et al. (2014)
β Discount factor 0.98510 Golosov et al. (2014)
δ Capital depreciation rate 1.0 Golosov et al. (2014)
g0 Annual TFP growth rate 0.0073 World Bank (2021) & WDI (2024)
Npop Exogenous labor supply (billions) 7.61 WDI (2024)
πhours Fraction of hours worked 0.24 ILO (2025b)
πLF Labor force participation rate 0.61 ILO (2025a)
γ̄ Climate change damage elasticity 5.3× 10−5 Golosov et al. (2014)
ψL Permanent emission share 0.2 Golosov et al. (2014)
ψ0 Decadal retained emission share 0.1988 NOAA (2025a) & OWID (2023)
ψ Decadal geometric emission decay rate 0.9555 NOAA (2025a) & OWID (2023)
S̄ Pre-industrial carbon concentration 596.4 NOAA (2025a)
S1,0 Permanent carbon stock in 2017 174.876 OWID (2023)
S2,0 Transitory carbon stock in 2017 95.122 NOAA (2025a) & OWID (2023)
ζm Output elasticity of emissions 1.0 Golosov et al. (2014)
Ωm,j Fixed cost share 0 Golosov et al. (2014)
K−1 Initial capital stock ($2021 trillions) 268.755 WDI (2024)
A0,0 Final goods sector initial TFP 2.2× 104 WDI (2024) & OEWS (2017)
E/EUSA Modeled emissions to US emissions ratio 0.376 EPA 2024 & OWID (2023)
EUSA/EWorld US emissions to world emissions ratio 0.146 OWID (2023)

“Total factor productivity (TFP) in log difference, percent,” at yearly and cross-country levels.

The precise choice of the decadal TFP growth rate is only relevant for the generation of specific

paths of allocations and only relevant for the discussion of robustness of the benchmark results.

I normalize the labor supply N to the total labor hours worked in the world in 2017, which is

1.11 billion hours. I calculate the total labor hours worked in the world in 2017 as the product of

the world population in 2017 Npop, which I obtain from WDI (2024), the fraction of hours worked

in the world πhours, which I obtain from the International Labour Organization (ILO) dataset, ILO

(2025b), and the labor force participation rate πLF , which I obtain from the ILO dataset, ILO

(2025a). Moreover, I assume that there is no population growth over time.

I follow Golosov et al. (2014) in the choice of the climate change damage elasticity γ̄, setting

it equal to 5.3× 10−5.On the other hand, I deviate from Golosov et al. (2014) in the choice of the

parameters {ψ,ψL, ψ0} and initial conditions {S1,0, S2,0, S̄} of the carbon cycle block of the model.

I provide a detailed description of the calibration of the carbon cycle block in Supplementary

Appendix C.3.

Although my model and solution algorithm are generalized to allow for nonlinear emissions-

output elasticity ζm,j and firm-specific fixed costs Ωm,j,t, in the baseline calibration, I assume that

ζm = 1 for all m, j, and Ωm,j,t = Ωm,j for all t and Ωm,j = 0 for all m, j.

The initial capital stock K−1 is set to 268 trillion dollars, which is the 2007 capital stock implied

by the 2017 global GDP of 125.35 trillions of dollars, the capital’s share of output α = 0.3, and the

annual real interest rate of 4.19 percent. I obtain the 2007-2017 total global GDP from the World

Bank’s World Development Indicators dataset, WDI (2024), and calculate the average 2007-2017
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Table 3: Employment shares of the five most carbon-intensive sectors in 2017

Sector Employment Share πm,0 (2017)

Coal mining (212) 0.0013
Cement manufacturing (327) 0.0029
Fertilizer manufacturing (325) 0.0057
Paper pulp mills (322) 0.0026
Petroleum refineries (324) 0.0007

Note: The employment shares are calculated using the employment data from the OEWS (2017) dataset, which
provides the employment data for all sectors in the US economy in 2017. The employment shares are calculated as
the ratio of the employment in the sector to the total employment in the US economy in 2017, which is 142.5 million.

global interest rate as the GDP-weighted-average of country-specific real interest rates, also from

WDI (2024), reported as “Real interest rate (percent).”

I set the initial TFP of the final goods sector in 2017, A0,0, to 22.0 trillion dollars, which is I

obtain by the following calculation:

A0,0 =
GDPWorld

2017

exp[−γ̄(S1,0 + S2,0)](K−1)α
[
(π0,0N)1−α−

∑M
m=1 νm

] [∏M
m=1 (10 · χ̄mπm,0N)νm

]
where GDPWorld

2017 is the 2017 global GDP in 2021 dollars, which I obtain from WDI (2024), and

I proxy the labor share of output in intermediate sectors by obtaining these sector’s employment

data from the OEWS (2017) dataset, which provides the employment data for all sectors in the

US economy in 2017. OEWS (2017) reports the employment data for each three-digit NAICS

sector. The 2017 employment shares of the five carbon-intensive sectors and the residual final

goods sector I consider in my model are reported in Table 3. The final goods sector employment

share is calculated as the residual of the total employment in the US economy in 2017, which is

142.5 million, minus the employment in the five carbon-intensive sectors I consider in my model.

Finally, I introduce two new ratios, E/EUSA and EUSA/EWorld, to account for the fact that the

model is calibrated to the US economy, while the carbon cycle that governs the climate change block

of the model is global. The ratio E/EUSA is the ratio of the modeled emissions to the US emissions,

which is 37.65 percent. I calculate this ratio by first calculating the total emissions attributed to

the five carbon-intensive sectors in the model by aggregating the facility-level emissions data from

the US Environmental Protection Agency (2024) dataset for the five carbon-intensive sectors I

consider in my model. Then, I divide the average total emissions attributed to the five carbon-

intensive sectors by the total US emissions between 2010 and 2023, which I obtain from the Our

World in Data, OWID (2023) dataset. The ratio EUSA/EWorld is the ratio of the average ratio

of US emissions to the world emissions calculated using OWID (2023) dataset between 2010 and

2023, which is approximately 14.6 percent. I include figures with the longest time series available

for these two ratios in Supplementary Appendix C.4.
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4 Quantitative Results

I quantitatively evaluate the model by simulating the optimal and equilibrium paths of allo-

cations and prices using the baseline calibration described. In this section, I present the model’s

simulation results of mean global surface temperature change, sectoral and aggregate emissions, the

ratio of optimal to equilibrium levels of output, and the optimal policy paths from 2017 to 2207.

My baseline simulation results show that the net distortion of the oligopoly is lower than that of

the competitive equilibrium, and accounting for sectoral and firm heterogeneity results in differing

optimal policies across sectors and firms.

Figure 5 summarizes key simulation outcomes. Panel (a) shows global mean surface temper-

ature change relative to pre-industrial levels. The temperature increase is highest under perfect

competition, lower under oligopoly, and lowest under the optimal policy. The model predicts an

optimal temperature rise of about 4 degrees Celsius by 2100, compared to 3 degrees Celsius in other

studies (e.g., Nordhaus (2014), Golosov et al. (2014), Barrage (2019)). The oligopoly equilibrium

path is closer to observed real-world temperature changes, which has reached about 1.63 degrees

Celsius above pre-industrial levels in 2024 according to NOAA (2025b).

Figure 5: Model simulations

(a) Global mean surface temperature change
relative to pre-industrial levels

(b) Relative optimal output paths

Panel (b) shows the ratio of optimal to equilibrium aggregate output. The ratio is always above

one, indicating that equilibrium output is suboptimal under both market structures. Oligopoly

equilibrium output is closer to the optimum than perfect competition, suggesting that oligopoly

leads to a smaller output distortion.

4.1 Market Structure and Optimal Policy

Optimal output taxes are consistently lower under oligopoly than perfect competition, with the

ratio of oligopoly to competitive taxes always below one. Output taxes are measured in 2021 US

dollars per dollar of value added. Figure 6 displays these ratios across sectors. The optimal output

tax ratio varies by sector and firm, reflecting differences in market power. The ratio is highest

for the most competitive sector, petroleum and coal products manufacturing (NAICS 3241), and
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lowest for the least competitive sector, coal mining (NAICS 2121). The levels of optimal output

taxes are shown in Appendix C.5, Figure 15.

Figure 6: Optimal output taxes under perfect competition vs. oligopoly for the median
productivity firm in five carbon-intensive NAICS sectors.

For interpretability, I convert the optimal output taxes in 2021 US dollars per metric ton of

carbon emissions. To convert the output taxes to per-ton carbon taxes, I use the assumption that

carbon emissions is a linear function of output (i.e., ζm = 1, for all m). I divide the output tax

by the firm’s carbon emission intensity, which is the ratio of emissions to value added. Generally,

within policy discussions, optimal carbon taxes are reported in dollars per ton of CO2 equivalent

emissions (see, e.g., EPA (2023)). For comparability, one can convert the per-ton carbon taxes

reported above to per-ton CO2 equivalent emissions by multiplying the carbon taxes by 44/12,

which is the ratio of the molecular weight of CO2 to that of carbon. Since the optimal carbon

taxes are a combination of the Pigouvian tax, that is equal to the marginal external damages from

the carbon emissions, and the output subsidy, that is equal to the marginal output distortion, I

decompose the optimal carbon taxes into these two components. The marginal external damages

from a unit of carbon emitted is uniform across all sectors and firms, and is equal to the OSCC.

Figure 7 shows the decomposition of the optimal output taxes into the Pigouvian tax and the

output subsidy for the median productivity firm in five intermediate carbon-intensive sectors. The

optimal carbon taxes equal to the Pigouvian tax minus the output subsidy, which is always positive,

indicating that the climate change externality is always greater than the output distortion. The

Pigouvian tax is equal to the optimal SCC, which is the marginal external damages from marginal

carbon emissions, and is shown with the black dashed line in the figure. The output subsidy is

equal to the marginal output distortion, which is the difference between the Pigouvian tax and the

optimal output tax. In the figure, each sector’s optimal output subsidy is shown with marked lines
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Figure 7: Optimal carbon tax decomposition into Pigouvian tax and output subsidy for the
median productivity firm in five carbon-intensive NAICS sectors.

and mapped by the legend.

This decomposition also reflects the market structure differences across the carbon-intensive

sectors. The marked distortion is greatest for the most carbon-intensive sector, coal mining (2121),

and the least for the least carbon-intensive sector, petroleum and coal products manufacturing

(3241). However, the size of the market distortion is not necessarily related to the carbon intensity

of the sector, as the optimal output subsidy for the paper manufacturing (3221) sector is greater

than that of the cement manufacturing (3273) and fertilizer manufacturing (3253) sectors, even

though the latter two are more carbon-intensive. This relationship also holds when inspecting the

optimal-to-Pigouvian tax ratios in Figure 6. The optimal output taxes are closer to the Pigouvian

tax (i.e., the ratio is closer to one) when the market power is lower.

4.2 Optimal Policy and Firm Heterogeneity

Moreover, when firms within the same sector can have different levels of productivity they need

different optimal policies. Figure 8 shows the optimal carbon taxes for the 10th, 25th, 50th, 75th,

90th, and 99th percentiles of the productivity distribution of firms in five intermediate carbon-

intensive sectors. The black dashed line shows the OSCC. The other lines with markers show the

optimal emissions subsidy for firms at different percentiles of the productivity distribution when

market power is the only distortion and is firm- and sector-specific. The optimal firm-specific

carbon taxes equal to the OSCC minus the firm-specific output subsidy. Thus, lower the subsidy,

higher will be the optimal tax on emissions from the unregulated oligopolistic firm. When the

output subsidy exceeds the OSCC, the optimal carbon tax becomes negative, indicating that the

firm should be subsidized to increase its output.

33



Figure 8: Optimal carbon taxes under perfect competition vs. oligopoly for lowest, median, and
highest productivity firms in five carbon-intensive NAICS sectors.

(a) Coal mining (b) Cement manufacturing

(c) Fertilizer manufacturing (d) Paper manufacturing

(e) Petroleum and coal products manufacturing

In some cases, firms with higher productivity may face higher optimal carbon taxes, while in

other cases, they may face lower taxes or even subsidies. This non-monotonic relationship high-

lights the importance of considering firm-specific characteristics when designing climate policies.

Moreover, the dispersion of firm productivity distribution within a sector differs across sectors,

as discussed in Section 3.3 Table 1. For example, the coal mining sector (NAICS 2121) and the

petroleum and coal products manufacturing sector (NAICS 3241) have relatively high dispersion in

firm productivity, while the cement manufacturing sector (NAICS 3273) has relatively low disper-
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sion. Thus, the optimal carbon taxes for firms in the coal mining and petroleum and coal products

manufacturing sectors vary more across firms than those in the cement manufacturing sector.

The non-monotonic relationship between firm productivity and optimal carbon taxes warrants

further investigation. In a Cournot competition setting, firms with higher productivity produce

more output since they have lower marginal costs. However, the more productive firms also have

more market power and internalize a larger downward impact of their output on price, thus they

withhold more output to increase their profits. The per-unit subsidy required to correct the output

distortion is higher due to greater the market power of more productive firms, but also as productiv-

ity increases, the marginal cost of production decreases, leading to more output. Thus, in Cournot

competition, the direction in which the optimal output subsidy changes with productivity depends

on the relative rates of change of the firm’s marginal cost, and the firm’s markup distortion, which

is linked to the firm’s price elasticity of demand and to its strategic behavior.

5 Policy Experiments

I now evaluate the welfare consequences of alternative policies, focusing on cases where carbon-

intensive sectors are either oligopolistic or perfectly competitive. As established in Section 2.5, the

optimal output tax under oligopoly is firm-specific and depends on a firm’s carbon intensity and

elasticity of demand. However, much of the literature (e.g., Golosov et al. (2014) and Golosov et al.

(2014)) assumes sector-wide uniform taxes, overlooking firm heterogeneity. I consider two policy

settings.

In the first, the true market structure is Cournot oligopoly with heterogeneous firms. I compare

three scenarios: (i) an economy-wide uniform carbon tax, equal to marginal external damages; (ii) a

sector-wide uniform carbon tax, based on a representative firm’s productivity and carbon intensity;

and (iii) no policy intervention, serving as the benchmark decentralized equilibrium. To derive the

carbon tax from an output tax, I divide by each firm’s carbon intensity. The resulting tax per ton

of emissions is constant across firms in scenario (i), but sector-specific in scenario (ii).

In the second setting, I assume the true market structure is perfect competition. I compare:

(i) the firm-specific optimal output tax designed for oligopolistic sectors with heterogeneous firms

from Section 2.5, and (ii) the sector-wide uniform tax described above. I also report welfare under

no intervention.

Notably, the sector-wide tax appears in both sets of experiments, applied under different as-

sumptions about market structure. For each case, I compute welfare losses relative to the planner’s

first-best allocation, using both consumption-equivalent losses and equivalent variation in trillions

of 2021 USD. I present these results in Table 4.

The table reports welfare losses under various policy scenarios, relative to the first-best alloca-

tion. The top panel assumes carbon-intensive sectors are Cournot oligopolies with heterogeneous

firms. Without intervention, the oligopoly equilibrium results in a 1.55% consumption-equivalent

welfare loss (equivalent to 11.97 trillions of 2021 US dollars). Imposing an economy-wide uni-
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Table 4: Welfare Losses Associated with Policy Experiments

Market Structure Policy Scenario CE Loss (%) EV ($2021tril.)
Cournot Oligopoly No Policy Intervention 1.55 $11.97

Economy-Wide Uniform Carbon Tax 1.81 $14.03
Output Tax for Homogeneous Oligopolistic Firms 5.35 $41.38

Perfect Competition No Policy Intervention 11.22 $86.76
Firm-Specific Output Tax for Oligopolistic Firms 121.25 $937.57
Output Tax for Homogeneous Oligopolistic Firms 5.37 $41.52

Note: The first column reports the true market structure, which is either Cournot Oligopoly or Perfect Competition,
of the carbon-intensive sectors. The second column reports the policy scenario, which is either no policy intervention,
or the optimal tax for the incorrectly assumed market structure, or policy that ignores the heterogeneity of firms
within the same sector. The third column reports the permanent percentage reduction in consumption that would
make a representative agent indifferent between the policy scenario and the first-best allocation, i.e., the consumption-
equivalent (CE) welfare loss. The fourth column reports the equivalent variation (EV) of the welfare loss in trillions
of constant 2021 US dollars. EV represents the monetary value of the utility difference between the policy and the
first-best scenario, calculated by applying the percentage loss to baseline aggregate consumption in 2017.

form carbon tax—optimal under perfect competition—yields a slightly higher loss of 1.81% (14.03

trillions of 2021 US dollars). A sector-wide uniform tax, based on a representative firm’s charac-

teristics, performs significantly worse, resulting in a 5.35% loss (41.38 trillions of 2021 US dollars).

This policy undertaxes low-markup, high-emission firms, leading to greater environmental harm.

These results show that both uniform taxes perform worse than no policy, underscoring the cost of

ignoring heterogeneity in market power and emissions intensity.

The bottom panel considers the case where carbon-intensive sectors are perfectly competitive.

Here, the unregulated equilibrium produces an 11.22% welfare loss (86.76 trillions of 2021 US

dollars). Imposing the optimal tax derived for oligopolistic firms leads to a catastrophic 121.25%

loss (937.57 trillions of 2021 US dollars), larger than global GDP in the base year. This reflects

the danger of subsidizing output in competitive industries where the main distortion is excessive

emissions. In contrast, applying the sector-wide uniform tax—originally designed for symmetric

oligopolies—yields a smaller loss of 5.37% (41.52 trillions of 2021 US dollars), outperforming the

laissez-faire case.

Together, these results highlight the importance of aligning policy design with market struc-

ture. Misclassifying a competitive industry as oligopolistic—and applying subsidy-heavy output

taxes—can result in massive welfare losses. By contrast, applying imperfect but positive carbon

pricing in competitive sectors is still preferable to inaction.

6 Conclusion

Economists going back to Buchanan (1969) have recognized that the two market failures as-

sociated with market power and negative environmental externalities work in opposite directions.

While market power leads to monopolies restricting output in order to charge inefficiently high

prices, negative environmental externalities mean that by failing to account for the damages they

cause, polluters produce too much output and charge inefficiently low. A policy that corrects only
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one of these problems could be worse than not intervening at all.

Building on this insight, I argue that many of carbon-intensive industries have market power

by showing the empirical correlation between markups and economic profit rates, two measures of

market power, and greenhouse gas emission intensities of industries in the US. The most carbon-

intensive industries have markups and economic profit rates that indicate that they are pricing

power and operate in oligopolistic market structures. The higher carbon emissions per value added

by these industries warrants a carbon tax to correct the negative externality associated with their

production. However, their high markups and positive profit rates indicate that they restrict output

to charge higher prices, which would warrant them to be subsidized to correct the market power

externality. The ideal solution to correcting one of these market failures requires the other one to

be corrected as well. However, in practice, it is difficult to implement two separate policies. Any

policy to correct one of these market failures needs to take into account of the state of regulation

of the other market failure.

Concerned with regulating carbon-intensive industries, I developed a neoclassical growth model

with carbon-intensive goods produced by oligopolistically competitive firms with heterogeneous

markups and productivity levels. I describe the centralized and decentralized solutions of the

model and solve for the optimal firm-specific output taxes that decentralize the planner’s solution.

The optimal output tax is a combination of the optimal tax on perfectly competitive producers

with negative environmental externalities and the optimal subsidy on oligopolistic producers with-

out negative environmental externalities. When the market structure is fixed, the optimal output

tax depends on a producer’s carbon intensity and its firm- and industry- characteristics. Moreover,

the optimal output tax that addresses both market failures for unregulated oligopolistic produc-

ers is lower than the optimal output tax for perfectly competitive producers with only negative

environmental externalities.

Using data from the US, I calibrate the model to reflect the current carbon-intensity and

market structure of the top five carbon-intensive industries in the US. The relative magnitudes of

the optimal output tax for carbon-intensive perfectly competitive and carbon-intensive unregulated

oligopolistic market structures are quite different. The difference between the optimal tax and the

Pigouvian tax increases as the level of competition decreases. Given the current characteristics of

US carbon-intensive industries, the output reduction from market power is less concerning that the

output reduction needed to limit climate change.

Moreover, in a series of policy experiments, I compare the welfare losses associated with imple-

menting the optimal output tax on firms in incorrectly assumed market structures. Implementing

an optimal policy for an incorrectly assumed market structure may be worse than no policy inter-

vention, regardless of whether the true market structure is oligopolistic or perfectly competitive.

If the industries are oligopolistic, then no intervention is better than implementing the incorrectly

designed output tax. If the industries are perfectly competitive, any positive tax is better than no

intervention at all, even if the tax is not optimal for the true market structure, whereas subsidizing

perfectly competitive and carbon-intensive industries could be catastrophic. This result is concern-
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ing and it highlights the importance of correctly identifying the market structure of industries when

designing policies to correct the negative externalities arising from their carbon emissions.

The proposed policy has advantages over the standard distortion-specific policies, as it can still

achieve the first-best allocation in the presence of two separate market failures. By regulating

output rather than emissions directly, the regulator can employ a single policy instrument to both

discourage high-emissions production and subsidize zero-emissions infant industries characterized

by high market concentration and market power.

References

Acemoglu, Daron, Philippe Aghion, Leonardo Bursztyn, and David Hemous (2012). “The Environ-

ment and Directed Technical Change.” American Economic Review 102.1, pp. 131–166.

Anthoff, David and Richard S. J. Tol (2013). “The Uncertainty About the Social Cost of Carbon:

A Decomposition Analysis Using FUND.” Climatic Change 117.3, pp. 515–530.

Atkeson, Andrew and Ariel Burstein (2008). “Pricing-to-Market, Trade Costs, and International

Relative Prices.” American Economic Review 98.5, pp. 1998–2031.

Barnett, A. H. (1980). “The Pigouvian Tax Rule Under Monopoly.” American Economic Review

70.5, pp. 1037–1041.

Barrage, Lint (2019). “Optimal Dynamic Carbon Taxes in a Climate–Economy Model with Distor-

tionary Fiscal Policy.” Review of Economic Studies.

Baumol, William J. and Wallace E. Oates (1988). The Theory of Environmental Policy. 2nd ed.

Cambridge University Press.

Buchanan, James M. (1969). “External Diseconomies, Corrective Taxes, and Market Structure.”

American Economic Review 59.1, pp. 174–177.

De Loecker, Jan and Jan Eeckhout (2017). The Rise of Market Power and the Macroeconomic

Implications. Working Paper 23687. National Bureau of Economic Research.

Eeckhout, Jan (2025). “The Value and Profits of Firms.” Journal of the European Economic Asso-

ciation.

Golosov, Mikhail, John Hassler, Per Krusell, and Aleh Tsyvinski (2014). “Optimal Taxes on Fossil

Fuel in General Equilibrium.” Econometrica 82.1, pp. 41–88.

Hassler, J., P. Krusell, and A.A. Smith (2016). “Chapter 24 - Environmental Macroeconomics”. Ed.

by John B. Taylor and Harald Uhlig. Vol. 2. Handbook of Macroeconomics. Elsevier, pp. 1893–

2008.

International Labour Organization (2025a). Labour Force Statistics (LFS).

https://ilostat.ilo.org/data/. Accessed: 2025-06-24.

— (2025b). Wages and Working Time Statistics (COND). https://ilostat.ilo.org/topics/working-

time/. Accessed: 2025-06-24.

IPCC (2021). “Climate Change 2021: The Physical Science Basis. Contribution of Working Group

I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.” Ed. by

38



V. Masson-Delmotte, Zhai P., Pirani A., S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen,
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Supplementary Appendix

Appendix A Data

For the motivational evidence presented in Section 1 and data used in the model calibration

in Section 3, I use two primary data sources: (i) US Environmental Protection Agency’s (2024)

Greenhouse Gas Reporting Program (GHGRP) data, for annual facility-level GHG emissions, and

(ii) the S&P Global Market Intelligence’s (2023) Compustat for financial statements of private

sector. GHGRP data is available from 2010 to 2023, and has detailed information on the emissions

of individual facilities in the US. Compustat data is available from 1950 to 2024, and contains

information on the financial statements of publicly traded private sector firms in the United States

with public equity or debt.

GHGRP reports emissions data in units of metric tons of carbon dioxide equivalent (CO2e) for

each facility that is subject to the reporting requirements of the program. Each facility has a unique

facility identification number that is used to track emissions over time even if the facility’s name

or address changes. GHGRP requires reporting of GHG emissions and other relevant information

from large emissions sources and suppliers of certain products in the US. GHGRP divides emissions

based on the type of facility, such as direct emitter, onshore oil and gas production, gathering

and boosting, transmission pipelines, local distribution companies (LDC) direct emissions, sulfur

hexafluoride (SF6) from electrical equipment, and suppliers of products such as coal, oil, and natural

gas.

Moreover, EPA also publishes data on the parent company ownership structure of facilities.

I designate emissions attributable to each parent company by assigning a fraction of emissions of

each facility based on the parent company’s ownership share. Matching these facility-level emissions

to parent company’s that own them allows me to aggregate facility-level emissions to the parent

company-level.

On the other hand, Compustat data contain firm-level balance sheet and income statement

data. I use Compustat to construct three variables of interest: firm-level value added, economic

profit rates, and markups. I restrict the sample to domestic firms, which have standard industry

format in USD with Foreign Incorporation Codes (FIC) in the USA. I exclude utilities (NAICS

codes starting with 22) because they are regulated and have different pricing structures than other

industries. I also exclude firms with negative or missing assets, sales, cost of goods sold, operating

expenses, or gross plants, property, and equipment (PPE). Finally, I also exclude observations in

which acquisitions are larger than 5 percent of the value of total assets.

I also download price deflators from NIPA Table 1.1.9 to convert nominal Compustat variables

to real variables. I use the GDP deflator from line 1 to deflate all nominal variables, except for

deflating capital expenditures, which I deflate using the nonresidential fixed investment deflator

from line 9.

I construct firm-level measure of capital using the perpetual inventory method. First, I initialize

the capital stock using the first PPE observations for each firm. Then iterate forward on capital
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using the accumulation equation Ki,t = Ki,t−1 + Ii,t − δKi,t−1, where I compute net investment

using changes to net PPE. I assume the depreciation rate δ is 0.07. Finally, to obtain a measure

of the real capital stock, I deflate the net investment by the investment goods deflator. Moving

forward, I use only real variables when I construct firm-level measures.

First, I construct a measure of firm-level value added by subtracting the cost of goods sold

(COGS) from revenue (REVT) for each observation. Next, I calculate firm-level economic profit

rates by following Eeckhout (2025). For profits (earnings) of the firm, I use the accounting profits

πi,t, also known as “net income”:

πi,t = REVTi,t − COGSi,t −XSGAi,t −XINTi,t −DPi,t +NOPIi,t + SPIi,t − TXPDi,t,

where REVT is the revenue, COGS is the cost of goods sold, XSGA is the selling, general and

administrative expenses, XINT is the interest expense, DP is the sum of depreciation tangible

fixed assets and amortization of intangibles, NOPI is the net operating income before interest

and taxes, SPI is the special items, and TXPD is the tax liability paid by the firm. Since some

shareholders maintain some assets in the firm, Eeckhout (2025) argues that the accounting profits

do not adequately measure the opportunity cost of those funds the shareholders expect to obtain,

and which should be deduced to obtain the economic profits. He constructs economic profits as the

difference between the accounting profits and the opportunity cost of capital, which is the product

of the firm’s shareholder equity and the cost of debt. I define a firm’s shareholder equity E as equal

to the the bookvalue of the firm, which is equal to its retained earnings RE plus the value of its

common stock CEQ, minus its goodwill GDWL,

Ei,t = REi,t +CEQi,t −GDWLi,t.

I calculate the firm-level cost of debt as the ratio of the firm’s interest expense (XINT) to the firm’s

total debt, equivalent to Total Liabilities (LT) in Compustat:

cost of debti,t =
XINTi,t

LTi,t
.

After I construct the firm-level shareholder equity and cost of debt, I can calculate its economic

profits as:

πei,t = πi,t − cost of debti,t · Ei,t−1.

A firm’s economic profit rate is calculated as profits as a share of the firm’s revenue: πei,t/REVTi,t.

I merge firm-level economic profit rates constructed from Compustat with the firm-level GHG

emissions data constructed from the GHGRP data by matching the parent company names and

years across the two datasets before I proceed to construct the markup measure.

Finally, I construct a measure of firm-level markups by following the production function ap-

proach framework proposed by De Loecker and Eeckhout (2017). De Loecker and Eeckhout (2017)

42



derive a firm-level markup, µi,t, formula as:

µi,t = θVi,t
PQ
i,tQi,t

P V
i,tVi,t

, (26)

where θVi,t is the output elasticity of a variable input, PQ
i,tQi,t is the output (sales), and P

V
i,tVi,t is the

variable input cost (operating expenses). Following Traina (2018), I use operating expenses, OPEX,

as a measure of variable input costs, which is the sum of COGS and XSGA. Whereas De Loecker

and Eeckhout (2017) use only COGS as a measure of variable input costs, but Traina (2018)

argues that OPEX is a better measure of variable input costs because it includes all the costs

associated with producing and selling a product, including marketing and management. While,

sales and input costs are measurable, the output elasticity is estimated in three stages. First, I

estimate industry-level Cobb-Douglas production functions with variable inputs and capital using

the following equation:

qi,t = θvvi,t + θkki,t−1 + ωi,t + εi,t, (27)

where qi,t is the log of sales, vi,t is the log of variable inputs, ki,t−1 is the log of capital stock, ωi,t

is the log of productivity, and εi,t is the error term. The productivity process is assumed to follow

an AR(1) process:

ωi,t = ρωi,t−1 + ζi,t,

where ζi,t is the innovation to productivity.

In the first stage, I remove the idiosyncratic measurement error from the production process

by calculating predicted sales from the following sales-weighted regression with firm and year fixed

effects:

qi,t = θvvi,t + θkki,t−1 + ξi + ξt + ϵi,t.

In the second stage, I use the predicted sales from the first stage to derive the implied productivity

process from equation (27). I regress this productivity process on its lagged value to recover the

persistence parameter ρ and to obtain innovation to productivity ζi,t.

In the third stage, I use a Generalized Method of Moments (GMM) estimator to estimate the

output elasticities, θ ≡ [θv, θk], by assuming the following moment conditions hold:

E

[
ζ̂i,t(θ)

(
vi,t

ki,t−1

)]
= 0.

The GMM estimator of θv is used to construct the firm-level markups following equation (26).
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Appendix B Theoretical Derivations & Proofs

B.1 Derivation of the Constant Social Cost of Carbon

The social cost of carbon emitted at time t by firm j in sector m, in consumption units at this

point is given by:

SCCm,j,t =
∞∑
s=0

βs
U ′(Ct+s)

U ′(Ct)

∂Yt+s

∂St+s

∂St+s

∂Et

∂Et

∂Em,t

∂Em,t

∂Em,j,t
.

The SCCm,j,t captures the externality of carbon emission from production of producer j in sector

m. It depends on structural parameters in complicated ways. When Assumptions 1, 2, and 3 are

satisfied, the expression for the SCC simplifies dramatically:

SCCm,j,t =
∂Et

∂Em,t

∂Em,t

∂Em,j,t

∞∑
s=0

βsCt
Yt+s

Ct+s
γt+s(1− ds),

=
∞∑
s=0

βsCt
Yt+s

Ct+s
γt+s(1− ds),

which expresses the costs of the externality only in terms of exogenous parameters and the endoge-

nous aggregate saving rate, along with the contemporaneous level of aggregate consumption. If

furthermore Assumption 6 holds, then the SCC expression simplifies significantly.

The baseline model parameterization implies that as long as the saving rates are constant across

time in both the planner’s solution and the representative consumer’s solution, the saving rates are

equal across these solutions. As long as the saving rate is constant and equal across the planner’s

solution and the representative consumer’s solution, both the optimal and decentralized allocations

will yield comparable dynamic structures. Assumption 6 follows Golosov et al. (2014) and simplifies

the optimal SCC expression to:

SCCm,j,t = Yt

[ ∞∑
s=0

βsγt+s(1− ds)

]
,

which expresses the firm-specific SCC as a proportion of GDP and a function of exogenous param-

eters. This result is identical to Proposition 1 of Golosov et al. (2014). A final expression for their

SCC is obtained by assuming that the expected time path for the damage parameter is constant,

i.e., γt+j = γ̄t for all j and dj defined as in equation (10):

SCCm,j,t

Yt
= γ̄t

(
ψL

1− β
+

(1− ψL)ψ0

1− (1− ψ)β

)
. (28)

B.2 The General Model: Intermediate Sector m Producer j’s Problem

I derive the first-order condition of sector m producer j’s problem with respect to the choice of

variable labor input Nvar
m,j,t. First, rewrite the per-period profit maximization problem for sector m
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producer j by substituting its price function from equation (13):

max
Nm,j,t,Nvar

m,j,t

κm,jpm,tX
1− 1

ηm
m,j,t X

1
ηm
m,t − wtNm,j,t s.t. pm,t = νm

Yt
Xm,t

,

Nm,j,t = Nvar
m,j,t +Ωm,j,t, and

Xm,j,t = Fm,j,t(N
var
m,j,t).

As outlined in Assumption 4, the sector m producer j internalizes its influence over the inter-

mediate sector m composite and price but not the final output and the general price level. Thus,

the sector m producer j’s first-order condition with respect to the choice of variable labor input

Nvar
m,j,t is:

max
Nm,j,t,Nvar

m,j,t

κm,jpm,tX
1− 1

ηm
m,j,t X

1
ηm
m,t − wtNm,j,t s.t. pm,t = νm

Yt
Xm,t

,

Nm,j,t = Nvar
m,j,t +Ωm,j,t, and

Xm,j,t = Fm,j,t(N
var
m,j,t).

As outlined in Assumption 4, the sector m producer j internalizes its influence over the inter-

mediate sector m composite and price but not the final output and the general price level. Thus,

the sector m producer j’s first-order condition with respect to the choice of variable labor input

Nvar
m,j,t is:

κm,j
dXm,j,t

dNvar
m,j,t

[
∂pm,t

∂Xm,t

∂Xm,t

∂Xm,j,t
X

1− 1
ηm

m,j,t X
1

ηm
m,t +

1

ηm
pm,tX

1
ηm

−1

m,t

∂Xm,t

∂Xm,j,t
X

1− 1
ηm

m,j,t +

(
ηm − 1

ηm

)
pm,tX

1
ηm
m,tX

− 1
ηm

m,j,t

]
= wt

κm,jpm,tX
1

ηm
m,tX

− 1
ηm

m,j,t · dXm,j,t

dNvar
m,j,t

[
∂pm,t

∂Xm,t

pm,j,tXm,j,t

p2m,t

+
1

ηm

pm,j,tXm,j,t

pm,tXm,t
+

(
ηm − 1

ηm

)]
= wt

pm,j,tF
′
m,j,t(N

var
m,j,t)

[
∂pm,t

∂Xm,t

sm,j,tXm,t

pm,t
+

1

ηm
sm,j,t +

(
ηm − 1

ηm

)]
= wt[

∂pm,t

∂Xm,t

Xm,t

pm,t
sm,j,t +

1

ηm
sm,j,t +

(
ηm − 1

ηm

)]−1

=
pm,j,t

wt/F ′
m,j,t(N

var
m,j,t)

The right-hand side of the last equation line is price over marginal cost for sector m producer

j, which is the producer j’s markup. The markup expression can be rewritten as
σ(sm,j,t)−1
σ(sm,j,t)

, where

σ(sm,j,t) is the price elasticity of sector m producer j’s demand. Thus,

σ(sm,j,t)

σ(sm,j,t)− 1
=

[
∂pm,t

∂Xm,t

Xm,t

pm,t
sm,j,t +

1

ηm
sm,j,t +

(
ηm − 1

ηm

)]−1

,

which implies that:

σ(sm,j,t) =

[
1

ηm
(1− sm,j,t) +

Xm,t/pm,t

|∂Xm,t/∂pm,t|
sm,j,t

]−1

,
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where
Xm,t/pm,t

|∂Xm,t/∂pm,t| is the absolute value of the inverse price elasticity of sectorm composite demand.

B.3 Planning Problem

Building upon the multi-sector neoclassical growth model with multiple intermediate production

sectors, I consider the case that the accumulated emissions from carbon-intensive intermediate input

production result in external damages, which affect the final good production possibilities. The

social planner will choose allocations taking this negative externality into account when maximizing

aggregate welfare subject to technology, feasibility, and carbon cycle conditions:

max{
Ct,Kt+1,Nt,N0,t,

{
Xm,t,Em,t,

{
Nm,j,t,Nvar

m,j,t,Xm,j,t,E
f
m,j,t

}Jm

j=1

}M

m=1

,Ef
t ,St,Yt

}∞

t=0

E0

∞∑
t=0

βt log(Ct)

subject to ∀t, Ct = Yt + (1− δ)Kt −Kt+1,

Yt = exp[−γt(St − S̄)]Kα
t (A0,tN0,t)

1−α−
∑M

m=1 νm

M∏
m=1

Xνm
m,t,

Xm,t =

 Jm∑
j=1

κm,jX
ηm−1
ηm

m,j,t


ηm

ηm−1

, ∀m,

Xm,j,t = χm,j,tN
var
m,j,t, ∀m, j,

Nm,j,t = Nvar
m,j,t +Ωm,j,t, ∀m, j,

Em,j,t = θm,j,tX
ζm,j

m,j,t, ∀m, j,

Em,t =

Jm∑
j=1

Em,j,t, ∀m,

Et =
M∑

m=1

Em,t,

A0,t+1 = (1 + gA)A0,t,

χm,j,t+1 = (1 + gχm,j )χm,j,t, ∀m, j,

Ct,Kt+1, Xt, Xj,t, Xm,j,t ≥ 0, ∀m, j,

Nt = N0,t +

M∑
m=1

Jm∑
j=1

Nm,j,t,

St =
t+T∑
s=0

(1− ds)Et−s,

Definition. The optimal allocations
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{
Ct,Kt+1, N0,t,

{
Xm,t, Em,t, {Nm,j,t, N

var
m,j,t, Xm,j,t, Em,j,t, SCCm,j,t}Jmj=1

}M

m=1
, Et, St, S1,t, S2,t, Yt

}∞

t=0
that solve the planning problem satisfy the following equations for every period t:

1

Ct
= β

1

Ct+1

(
α
Yt+1

Kt+1

)
, (29)

χm,j,t

 νmκm,j

X
ηm−1
ηm

m,t X
1

ηm
m,j,t

− θm,j,tζm,j
SCCm,j,t

Yt
X

ζm,j−1
m,j,t

 =
1− α−

∑M
m=1 νm

N0,t
, (30)

Ct = Yt +Kt+1, (31)

Yt = exp[−γt(St − S̄)]Kα
t (A0,tN0,t)

1−α−
∑M

m=1 νm

M∏
m=1

Xνm
m,t,

Xm,j,t = χm,j,tN
var
m,j,t, ∀m, j

Nm,j,t = Nvar
m,j,t +Ωm,j,t, ∀m, j

Xm,t =

 Jm∑
j=1

κm,jX
ηm−1
ηm

m,j,t


ηm

ηm−1

, ∀m

Nt = N0,t +
M∑

m=1

Jm∑
j=1

Nm,j,t,

Em,j,t = θm,j,tX
ζm,j

m,j,t, ∀m, j

Em,t =

Jm∑
j=1

Em,j,t, ∀m

Et =
M∑

m=1

Em,t,

St = S1,t + S2,t,

S1,t = S1,t−1 + ψLEt,

S2,t = ψS2,t−1 + ψ0(1− ψL)Et,

SCCm,j,t =
∂Et

∂Em,t

∂Em,t

∂Em,j,t

∞∑
s=0

βsCt
Yt+s

Ct+s
γt+s(1− ds), (32)

Conditions (29) and (31) are satisfied if and only if the saving rate is constant at αβ. Then by

Proposition 1 from Golosov et al. (2014), the optimal SCCt expression in equation (32) simplifies

to Λm,j,t. Moreover, the ratio SCCm,j,t/Yt that appears in equation (30) is constant at level Λ̂m,j,t

as shown in equation (12).

47



B.4 Decentralized Equilibrium

B.4.1 Competitive Equilibrium

Definition. In a competitive equilibrium, given the exogenous paths of aggregate labor supply

{Nt}∞t=0, taxes

{{
{τm,j,t}Jmj=1

}M

m=1

}∞

t=0

, and fixed costs

{{
{Ωm,j,t}Jmj=1

}M

m=1

}∞

t=0

, the allocations{
Ct,Kt+1, Yt, N0,t,

{
Xm,t, Em,t, {Nm,j,t, N

var
m,j,t, Xm,j,t, Em,j,t, SCCm,j,t}Jmj=1

}M

m=1
, Et, St, S1,t, S2,t

}∞

t=0

,

prices

{
qt, wt, rt,

{
pm,t, {pm,j,t}Jmj=1

}M

m=1

}∞

t=0

, transfers {Tt}∞t=0, and profits {Π0,Πm,j ,Π} that

satisfy the set of conditions for every period t:

χm,j,t

 νmκm,j

X
ηm−1
ηm

m,t X
1

ηm
m,j,t

− τm,j,t

Yt

 =
1− α−

∑M
m=1 νm

N0,t
, ∀m, j,

Xm,t =

 Jm∑
j=1

κm,jX
ηm−1
ηm

m,j,t


ηm

ηm−1

, ∀m,

pm,j,t = κm,jpm,tX
1

ηm
m,tX

− 1
ηm

m,j,t , ∀m, j,

1

Ct
= β

1

Ct+1
rt+1,

Ct = Yt +Kt+1,

Yt = exp[−γt(St − S̄)]Kα
t (A0,tN0,t)

1−α−
∑M

m=1 νm

M∏
m=1

Xνm
m,t,

Xm,j,t = χm,j,tN
var
m,j,t, ∀m, j,

Nm,j,t = Nvar
m,j,t +Ωm,j,t, ∀m, j,

Em,j,t = θm,j,tX
ζm,j

m,j,t, ∀m, j,

Nt = N0,t +

M∑
m=1

Jm∑
j=1

Nm,j,t,

Em,t =

Jm∑
j=1

Em,j,t, ∀m,

Et =

M∑
m=1

Em,t,

St = S1,t + S2,t,

S1,t = S1,t−1 + ψLEt,
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S2,t = ψS2,t−1 + ψ0(1− ψL)Et,

qt = βt (Ct/C0)
−1 ,

rt = αYt/Kt,

wt =

(
1− α−

M∑
m=1

νm

)
Yt/N0,t,

pm,t = νmYt/Xm,t,

∞∑
t=0

qtTt =
∞∑
t=0

qt

M∑
m=1

Jm∑
j=1

τm,j,tXm,j,t,

Π0 =
∞∑
t=0

qt

[
Yt − rtKt − wtN0,t −

M∑
m=1

pm,tXm,t

]
,

Πm,j =

∞∑
t=0

qt [(pm,j,t − τm,j,t)Xm,j,t − wtNm,j,t] ,

Π = Π0 +

M∑
m=1

Jm∑
j=1

Πm,j .

B.4.2 Equilibrium with Oligopolistic Intermediate Sectors

Definition. In an equilibrium with oligopolistically competitive intermedi-

ate good producers, given the exogenous paths of labor supply {Nt}∞t=0, taxes{{
{τm,j,t}Jmj=1

}M

m=1

}∞

t=0

, and fixed costs

{{
{Ωm,j,t}Jmj=1

}M

m=1

}∞

t=0

the allocations{
Ct,Kt+1, Yt, N0,t,

{
Xm,t, Em,t, {Nm,j,t, N

var
m,j,t, Xm,j,t, Em,j,t, sm,j,t}Jmj=1

}M

m=1
, Et, St, S1,t, S2,t

}∞

t=0

,

prices

{
qt, wt, rt,

{
pm,t, {pm,j,t}Jmj=1

}M

m=1

}∞

t=0

, transfers {Tt}∞t=0, and profits {Π0,Πm,j ,Π} that

satisfy the set of conditions for every period t:

χm,j,t

 νmκm,j

X
ηm−1
ηm

m,t X
1

ηm
m,j,t

σ(sm,j,t)− 1

σ(sm,j,t)
− τm,j,t

Yt

 =
1− α−

∑M
m=1 νm

N0,t
, ∀m, j,

Xm,t =

 Jm∑
j=1

κm,jX
ηm−1
ηm

m,j,t


ηm

ηm−1

, ∀m,

pm,j,t = κm,jpm,tX
1

ηm
m,tX

− 1
ηm

m,j,t , ∀m, j,

sm,j,t =
pm,j,tXm,j,t

pm,tXm,t
, ∀m, j,
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1

Ct
= β

1

Ct+1
rt+1,

Ct = Yt +Kt+1,

Yt = exp[−γt(St − S̄)]Kα
t (A0,tN0,t)

1−α−
∑M

m=1 νm

M∏
m=1

Xνm
m,t,

Xm,j,t = χm,j,tN
var
m,j,t, ∀m, j,

Nm,j,t = Nvar
m,j,t +Ωm,j,t, ∀m, j,

Em,j,t = θm,j,tX
ζm,j

m,j,t, ∀m, j,

Nt = N0,t +
M∑

m=1

Jm∑
j=1

Nm,j,t,

Em,t =

Jm∑
j=1

Em,j,t, ∀m,

Et =
M∑

m=1

Em,t,

St = S1,t + S2,t,

S1,t = S1,t−1 + ψLEt,

S2,t = ψS2,t−1 + ψ0(1− ψL)Et,

qt = βt (Ct/C0)
−1 ,

rt = αYt/Kt,

wt =

(
1− α−

M∑
m=1

νm

)
Yt/N0,t,

pm,t = νmYt/Xm,t, ∀m,
∞∑
t=0

qtTt =
∞∑
t=0

qt

M∑
m=1

Jm∑
j=1

τm,j,tXm,j,t,

Π0 =

∞∑
t=0

qt

[
Yt − rtKt − wtN0,t −

N∑
m=1

pm,tXm,t

]
,

Πm,j =
∞∑
t=0

qt [(pm,j,t − τm,j,t)Xm,j,t − wtNm,j,t] , ∀m,

Π = Π0 +
M∑

m=1

Jm∑
j=1

Πm,j .
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Appendix C Calibration Details

C.1 Sectoral Markups & Economic Profit Rates

I estimate the sectoral markups and calculate economic profit rates as described in Appendix

A. I present the sales-weighted average markups for the top five most carbon-intensive sectors

in Figure 9. I use the 2017 average sectoral markups as the base year for the calibration of the

model. The average markups for the top five most carbon-intensive sectors consistently exceed one,

indicating that these sectors have pricing power and can set prices above their marginal costs.

Moreover, although not directly used in calibration, I also present the sales-weighted average

economic profit rates for the top five most carbon-intensive sectors in Figure 10.

Although majority of the sectors historially have positive economic profit rates, the sectoral

economic profit rates for some sectors are negative in some years. Notably, the coal mining sector

(2121) experienced negative economic profit rates between 2013 and 2016 due to a sharp decline

in coal demand from the electric power sector amid the shale gas boom driven fall in natural gas

prices, which led to a significant reduction in coal production and prices, unusually warm weather,

which drove coal production to its lowest level since 1978, US Energy Information Administration

(2017) Moreover, the cement manufacturing sector (3273) experienced negative economic profit

rates following the 2008 financial crisis, which could be attributed to slowing housing construction

and infrastructure projects. The dip in US cement industry economic profit rates around 2016 was

likely due to a combination of slowing construction demand, overcapacity-driven price pressures,

rising maintenance and input costs, and consolidation-related disruptions, US Geological Survey

(2016).

Except the few outliers, the average economic profit rates for the top five most carbon-intensive

sectors are positive, indicating that these sectors have been able to generate excess returns above

their cost of capital and lack of competition in these sectors product markets.
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Figure 9: History of sectoral sales-weighted average markups of the top five most carbon-intensive
sectors

Note: The sectors are ordered by their carbon intensity in 2017, descending from left to right. The sectors are:
1. Coal mining (2121), 2. Cement manufacturing, Ready-mix concrete manufacturing, Concrete pipe, brick, and
block manufacturing, Other concrete product manufacturing(3273), 3. Fertilizer manufacturing, Pesticide and other
agricultural chemical manufacturing (3253), 4. Pulp mills, Paper mills, Paperboard mills (3221), 5. Petroleum
refineries, Asphalt paving mixture and block manufacturing, Asphalt shingle and coating materials manufacturing,
Other petroleum and coal products manufacturing (3241).
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Figure 10: History of sectoral sales-weighted average economic profit rates of the top five most
carbon-intensive sectors
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C.2 Sectoral Labor Productivity Growth

The blue dotted line in Figure 11 represents the annual labor productivity growth rate for

each sector, while the orange dashed line represents the average annual sectoral labor productivity

growth rate for years 2000-2023, which is used for the calibration of the model. Additionally the

average annual sectoral labor productivity growth rates are printed in orange on the right side of

each sector’s subplot.
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Figure 11: Historical sectoral labor productivity growth rates of the the three-digit Production
Account (BEA) sectors that contain the five most carbon-intensive sectors

Note: The mapping between the four-digit NAICS codes of the top five most carbon-intensive sectors and the three-
digit BEA codes and their industry descriptions is as follows: 1. 2121: 212, Coal extraction; 2. 3273: 327, Nonmetallic
mineral products; 3. 3253: 325, Chemical products; 4. 3221: 3221, Paper products; 5. 3241: 3241, Petroleum and
coal products.
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C.3 Carbon Cycle and Climate Module

Given my model’s different base year, I adjust the parameters of the carbon cycle and climate

module to match the observed atmospheric carbon concentration and annual carbon emissions data

from 1960 until 2020. First, I adjust the initial pre-industrial carbon concentration S̄ to match the

NOAA (2024) estimate of 280 parts per million before the start of the industrial revolution and

convert it to gigatons of carbon (GtC) using the conversion factor of 2.13 GtC per ppm, which

results in S̄ = 596.4 GtC. Second, I keep the share of permanent emissions ψL at 0.2 as reported

by IPCC (2021), which is the same as in Golosov et al. (2014). However, I deviate from Golosov

et al. (2014) when I estimate the decadal retained emission share ψ0 and the decadal geometric

emission decay rate ψ to match the path of atmospheric carbon concentration implied by linear

equation system for the carbon cycle restated below in equation (33) and the path of observed

atmospheric carbon concentration and the annual carbon emissions given the initial pre-industrial

carbon concentration S̄, using the following linear system of equations:

S1,t = S1,t−1 + ψLEt,

S2,t = ψS2,t−1 + ψ0(1− ψL)Et,

St = S̄ + S1,t + S2,t.

(33)

I obtain the historical atmospheric carbon concentration data from the NOAA (2025a) dataset,

which provides the annual atmospheric carbon concentration data from 1960 until 2020 in units of

parts per million (ppm). I convert the atmospheric carbon concentration data from ppm to GtC

using the conversion factor of 2.13 GtC per ppm. I obtain the annual carbon emissions data from

the OWID (2023) dataset, which provides the annual carbon emissions data for all countries in the

world from 1850 until 2020 in units of metric tons of C2 equivalent emissions. I convert the annual

carbon emissions data from metric tons of CO2 equivalent emissions to GtC by multiplying the

reported emissions by 12/44/10−9.

I estimate the decadal retained emission share ψ0 to be 0.1988 and the decadal geometric

emission decay rate ψ to be 0.9555, which are the values that match the observed atmospheric

carbon concentration from 1960 until 2020 given the initial pre-industrial carbon concentration

S̄ and the annual carbon emissions data from the OWID (2023) dataset. I calibrate the initial

permanent carbon stock S1,0 by summing up annual emissions from 1850 to 2017 and multiplying

this sum by ψL, which equals 174.876 GtC. I calculate the initial transitory carbon stock S2,0 by

subtracting the initial permanent carbon stock S1,−1 from the atmospheric carbon concentration

in 2017, which is 866.399 GtC as reported by the NOAA (2025a) dataset, resulting in the initial

transitory carbon stock to be 95.122 GtC. Figure 12 shows the calibration of the carbon cycle and

climate module, where the blue line represents the observed atmospheric carbon concentration from

1960 until 2020, and the orange line represents the model-implied atmospheric carbon concentration

given the calibrated parameters from 1960 until 2020.

I deviate from Golosov et al. (2014) when I calibrate the carbon cycle because my model has
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Figure 12: Calibration of the carbon cycle and climate module

a different base year, and I aim to match the observed atmospheric carbon concentration and

annual carbon emissions data rather than using reports from the IPCC. As Figure 12 shows, the

model-implied atmospheric carbon concentration closely follows the observed atmospheric carbon

concentration from 1960 until 2020, indicating that the calibrated parameters of the carbon cycle

and climate module are consistent with the observed data.

C.4 Carbon Shares

Figure 13 shows the historical global share of US carbon emissions from 1960 until 2020, which

is calculated as the ratio of US carbon emissions to the total global carbon emissions using data

from OWID (2023). The red dashed horizontal line represents the average of this ratio from 2010

until 2023, which is 14.6% and is used for the calibration of the model.

Figure 14 shows the historical share of carbon emissions from the five carbon-intensive sectors

considered in the model using data from the US Environmental Protection Agency (2024), to the

total US carbon emissions data from OWID (2023). These five most carbon-intensive sectors are

coal mining (NAICS 2121), cement manufacturing (NAICS 3273), fertilizer manufacturing (NAICS

3253), pulp and paper mills (NAICS 3221), and petroleum refineries (NAICS 3241). The red dashed

horizontal line represents the average of this ratio from 2010 until 2023, which is 37.6% and is used

for the calibration of the model.

Over time, both the share of US carbon emissions and the share of these top five most carbon-

intensive sectors in the US have been declining.
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Figure 13: Historical global share of US carbon emissions

Figure 14: Historical US carbon emissions share of the top five most carbon-intensive sectors in
2017

58



C.5 Additional Results

Figure 15 displays optimal output taxes for the median productivity firm in five carbon-intensive

sectors under perfect competition and oligopoly. Under perfect competition, the optimal tax equals

the Pigouvian tax (marginal external damages per unit of output). Under oligopoly, optimal taxes

are generally lower, reflecting firms’ market power. Optimal policy varies by sector and firm.

Output taxes are measured in 2021 US dollars per dollar of value added, where one equals a 100%

tax rate.

The optimal output taxes under perfect competition only reflect the climate-externality correc-

tion. Thus, the optimal output taxes under perfect competition decrease as the carbon intensity

of the sector decreases, reflecting the greater emissions and damages from a unit of value added in

more carbon-intensive sectors. On the other hand, the optimal output taxes under oligopoly reflect

both the climate-externality correction and the output distortion correction. Thus there is no clear

relationship between the optimal output taxes under oligopoly and the carbon intensity of the

sector. The optimal output taxes under oligopoly are lower than those under perfect competition,

reflecting the market power of firms. However, the difference between the oligopoly and perfect

competition output taxes depends on the scale of the output distortion, which is not necessarily

related to the carbon intensity of the sector.
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Figure 15: Output taxes under perfect competition vs. oligopoly for the median productivity firm
in five carbon-intensive NAICS sectors.

(a) Coal mining (b) Cement manufacturing

(c) Fertilizer manufacturing (d) Paper manufacturing

(e) Petroleum and coal products manufacturing
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