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Abstract

I study the distributional and welfare effects of clean energy subsidies in the context
of US residential rooftop solar panel adoption. Although these subsidies are often
criticized as regressive because wealthier households claim most benefits, I show
that this conclusion changes once dynamic externalities from learning-by-doing and
pollution abatement are incorporated. Using installation-level data on residential
solar system installations, I provide new evidence of learning spillovers and estimate
learning elasticities to discipline a heterogeneous-agent general-equilibrium model
with incomplete markets, irreversible adoption, endogenous cost declines, and unequal
pollution damage exposures. Calibrated to US data, the model quantifies how alternative
subsidy designs and financing schemes affect adoption, inequality, and welfare. Uniform
refundable subsidies financed by a flat labor income tax raise aggregate welfare and
accelerate adoption, whereas progressive financing or nonrefundable credits reduce
support among lower-wealth households. When pollution damages are incorporated,
the same subsidy becomes universally welfare-improving and strongly progressive.
Accounting for dynamic spillovers and unequal pollution exposure overturns the view
that residential solar subsidies are inherently regressive.
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1 Introduction

One concern regarding low-carbon (“clean”) technology subsidies is that high-income

households claim them at a disproportionately high rate compared to lower income households

due to high initial costs. For example, on average, the top income quintile in the United

States (US) received more than 50% of investment tax credits for residential energy efficiency

improvements since introducing these credits, according the Internal Revenue Service’s (IRS)

Statistics of Income (SOI) data. If these subsidies that mainly go to the richer households

are funded by general taxpayer revenues, then they are pecuniary transfers from poor to rich

households. Such transfers are perceived as regressive in monetary terms, and as such, appear

inequitable and raise discontent among the populace.

At the same time, if we consider both the environmental and learning-by-doing external

economy effects alongside the general equilibrium effects, these policies that subsidize richer

households may have greater welfare benefits for poorer households than for richer ones. For

example, the health co-benefits of reducing local air pollutants associated with decreasing

greenhouse gas emissions are larger for poorer households who are more commonly exposed to

air pollution. Since wealthy households are responsible for the majority of residential emissions,

speeding up their transition to low-carbon technologies will yield the most environmental

benefits. Moreover, subsidizing early adopters who are likely to be wealthy could reduce the

high adoption costs at an accelerated rate, making adoption feasible for later adopters who

are likely to be less able to afford high adoption costs.

Motivated by this regressivity concern, I ask: How is low-carbon technology adoption

related to household income in the US? Focusing on residential rooftop solar panel adoption,

I show a positive correlation between income and the aforementioned adoption rates. If

richer households receive more of these subsidies, then what are the distributional welfare

implications of existing residential clean technology subsidies in the US over the joint income

and wealth distribution? By calibrating a model to reflect the US economy and policy in

the early days of the energy transition, I can quantify the equity and efficiency of the recent

energy transition policies that promote adoption of residential rooftop solar panels.

Finally, I ask: what is the best policy mix to achieve different policy objectives, such

as emissions reduction, welfare maximization, and transition speed, together with majority

support. I use my calibrated model to evaluate the optimal policy mix under these different

objectives and their majority support. First, I evaluate the overall welfare effects and political

feasibility of different financing strategies for a uniform subsidy payment schedule through

policies including the following: a uniform labor income tax, a progressive labor income tax,

a corporate income tax, an emissions tax, and finally, government debt. In a second set of
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experiments, I evaluate the effectiveness of different subsidy programs’ ability to meet the

outlined policy objectives with an example being an income-capped subsidy program. These

comparative policy experiments can inform policy design and implementation of residential

energy efficiency improvement tax credits in the US and other countries.

Versions of the questions posed here have been addressed in literature. Most of the

previous research falls into two categories: (i) empirical analyses of the distributional effects

of environmental policies, and (ii) the macroeconomic studies on the unequal economic

consequences of climate change policies.

Borenstein and Davis (2024) have well documented the adoption patterns for various

low-carbon energy technologies and tax credit receipts for these technologies across income

groups in the US. However, their study neither goes beyond descriptive facts nor quantifies

dynamic general equilibrium effects, such as the indirect effects on relative prices, or the

non-pecuniary effects such as the health co-benefits of reducing local air pollutants. Vona

(2023) summarize the multidimensional impacts that climate policies have on well-being

which have been documented by various researchers and provides an overview of the empirical

literature. The consensus of this empirical literature is that subsidies to clean and energy-

efficient equipment exacerbate the regressivity of climate policies in the presence of financial

constraints by benefiting the wealthier households at the expense of less wealthy ones. In a

static modeling framework without uncertainty, Levinson (2019) show that taxing energy

use would be both more cost-effective and less regressive than subsidizing energy-efficient

appliances or taxing inefficient appliances. These static analyses ignore the demand response

that is the intended result of these policies.

I will contribute to these empirical analyses of who benefits from clean technology subsidies

by quantifying the overall distributional effects of these policies while taking into account

multidimensional effects using a model calibrated to reflect the US economy. Specifically, I

incorporate two additional indirect distributional effects of clean technology subsidies into a

general equilibrium model: (i) the learning-by-doing spillover effects of early adopters, and

(ii) the health co-benefits of reducing local air pollutants associated with reducing greenhouse

gas emissions. The first dimension that I incorporate in my analysis is the learning-by-doing

spillover effects from early adopters, who are likely to be wealthier. Gao, Rai, and Nemet

(2022) is one of few empirical economic analyses which find that learning through economies

of scale in production leads to cost reductions, not only in hardware costs, but also in

non-hardware costs in US residential solar installations. Secondly, reducing local air pollutant

emissions has well-known positive effects in terms of health co-benefits such as reducing local

air pollutants and improving health outcomes. Banzhaf, Ma, and Timmins (2019) summarize

the large body of economic literature that documents a strong positive correlation between
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ambient air pollution, poverty, and race – the so-called environmental justice gap.

There are several quantitative macroeconomic studies that analyze the distributional

effects of climate policies in a general equilibrium framework. The majority of these studies

focus on the distributional effects of carbon pricing instead of low-carbon technology subsidies

as my paper does. Känzig (2023), Benmir and Roman (2022), Fried, Novan, and Peterman

(2024), Fried, Novan, and Peterman (2018), and Belfiori, Carroll, and Hur (2024) are some

recent studies that analyze the distributional effects of carbon pricing.

Känzig (2023) find that a carbon tax is regressive using institutional features of the

European emissions trading system and high-frequency data. Benmir and Roman (2022)

study the economic consequences of carbon pricing that achieves the net-zero emissions target

in the US by 2050 and find that the policy induces large redistribution of income and wealth

from poor to rich households. Fried, Novan, and Peterman (2024) study the welfare and

inequality implications of different ways to return carbon tax revenue back to households

and find that the welfare-maximizing rebate uses two-thirds of carbon tax revenue to reduce

the distortianary capital income tax while using the remaining one-third to increase the

progressivity of the labor income tax. In an earlier work Fried, Novan, and Peterman (2018)

study how different approaches for recycling carbon tax revenue affect the welfare of current

and future generations. Their work highlights the importance of not only long-run outcomes,

but also the transitional welfare effects of how carbon tax revenues are recycled. Using

household expenditure and emissions data, Belfiori, Carroll, and Hur (2024) document that

low-income households have higher emissions per dollar spent than high-income households,

making a carbon tax regressive. Overall, the literature shows that carbon pricing is regressive,

but the regressivity can be mitigated by recycling the carbon tax revenue in a progressive

way.

Kuhn and Schlattmann (2024) is the closest work to this project in that they develop a

quantitative life-cycle model with heterogeneous adoption rates of carbon-neutral commitment

goods by income to quantify the reduction-redistribution trade-off of different policy mixes.

Lanteri and Rampini (2025) is another similar macroeconomic study of adoption of clean

technologies, but instead by heterogeneous firms in a dynamic general equilibrium model

of firm dynamics and clean technology adoption with financial constraints. They find that

financially constrained firms optimally invest in dirty new technologies as well as in older

technologies, resulting in a positive relation between firm size and energy efficiency. They

highlight that their proposed model could be a laboratory for studying the distributional

effects of environmental policy across firms, however they leave these exercises for future

work. The computational methods I propose in this paper could easily be extended to study

heterogeneous firms rather than households.
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This paper makes three contributions to understanding the distributional effects of clean

energy subsidies in the US residential rooftop solar panel installation market. First, I provide

new empirical evidence on localized learning-by-doing in residential solar installations. Using

installation-level data merged with state and utility policy shocks, I find that each doubling

of cumulative installed capacity reduces system costs by about 7%. An instrumental-variable

strategy exploiting the timing of new policy introductions identifies learning effects that are

stronger when adoption is policy-driven rather than market-driven, confirming that subsidies

accelerate cost declines through learning spillovers.

Second, I develop a heterogeneous-agent dynamic general equilibrium model with in-

complete markets, irreversible technology adoption, adoption-driven cost reductions, and

unequal pollution damages. This framework captures both the private adoption incentives

and the general equilibrium feedbacks that shape how residential clean energy subsidies affect

adoption patterns, inequality, and welfare.

Third, I calibrate the model to reflect the US economy and policy environment in the

early days of the energy transition, using detailed data on household demographics, income

and wealth distributions, residential solar adoption patterns, and policy parameters. The

calibrated model delivers several novel quantitative findings: Uniform refundable subsidies

financed by a flat labor-income tax raise aggregate welfare and speed up adoption, with

94% of households benefiting. Financing subsidies through a progressive tax reduces overall

welfare gains and disproportionately lowers gains for low-wealth households by depressing

short-run wages and transfers. Nonrefundable tax credit, which mirrors the structure of the

U.S. federal residential solar credit, further excludes low-income households, but does not

slow down diffusion. Income-capped subsidies, while intended to improve fairness, slow down

adoption, reduce learning spillovers and generate aggregate welfare losses that especially hurt

the middle-wealth households.

When pollution damages are included, the nonrefundable uniform subsidy becomes

universally welfare-improving and strongly progressive, as cleaner air disproportionately

benefits poorer households. Together, these results show that the perceived regressivity

of residential solar subsidies reflects a partial-equilibrium perspective. Once dynamic cost

declines and pollution externalities are accounted for, the equity-efficiency trade-off in clean

energy policy becomes much weaker.

The remainder of the paper is structured as follows. In Section 2, I summarize the data

that motivates the research questions and provide background for the model. In Section

3, I outline the structural model that I use to answer my research questions. In Section

4, I describe the complete characterization of the model used for quantitative analysis, its

calibration and fit to the data, and present the baseline model simulations. In Section 5, I
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Table 1: Descriptive statistics for the income quintiles in the US

Income Percentile Bottom 20% 20%-40% 40%-60% 60%-80% Top 20% Top 5%

Share of aggregate income 3.17 8.42 14.37 22.83 51.21 22.81
Share of residential energy consumption 12.59 18.16 13.07 19.75 24.42 12.01
Share of rooftop solar adoptors 0.53 3.42 9.26 16.87 43.75 26.19
Share of residential clean energy credits 0.48 4.11 4.08 21.75 48.99 20.59
Mortality damages per capita (2020 dollars pp) 4,811 3,910 3,103 2,769 2,354 NA

Notes: Reported shares and rates are in percentages, except for the mortality damage per capita
values, which is in 2020 US dollars per person (pp). NA indicates not available.

conduct policy experiments to evaluate the effectiveness of different policy mixes in achieving

the outlined policy objectives and majority support. Finally in Section 6, I conclude and

discuss the implications of the results for policy design and implementation.

2 Data and Empirical Motivation

To motivate my research questions, it is essential to understand the distributions of

residential energy consumption, adopters of on-site solar power generation, the receipts of

residential energy credits, ambient air pollution exposure, and energy expenditure shares

across income quintiles in the US. I summarize these distributions in Table 1 using various

cross-sectional data sources from the US in 2015. I focus on 2015 because it is the earliest

year for which data on all these variables is available.

First, using data from the US Census Bureau’s (2023) 2015 American Community Survey

(ACS) 5-Year Estimates, I construct income quintiles based on the upper income limits of

quintiles summarized in Table B19080. For 2015, these limits are $17,929, $35,583, $62,600,
$108,429, and the lower limit for top 5% is $146,778. I report the share of aggregate income

for each income quintile from the US Census Bureau’s (2023) 2015 ACS Table B19082 in the

first row of Table 1. The top income quintile accounts for more than half of the aggregate

income in the US.

Second, I use the US Energy Information Agency’s (2023) 2015 Residential Energy

Consumption Survey (RECS) data to calculate the share of aggregate residential energy

consumption for each income quintile. Annual household income is reported as a categorical

variable in the RECS data, and I group households according to the income quintile’s upper

limits as closely as possible. Thus, the upper income limits for the quintiles I report from the

RECS data are $20,000, $40,000, $60,000, $100,000, and the lower limit for the top 5% is

$140,000. I use the household weights provided in the RECS data for all of my calculations.

I calculate the share of aggregate residential energy consumption for each income quintile
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through the following process: aggregating total energy consumption in British Thermal

Units (BTUs) for each group; calculating the national total, and calculating the share of each

group’s total as a proportion of the national total. The results reported in the second row

show that the top income quintile accounts for almost one quarter of the aggregate residential

energy consumption in the US.

Third, I summarize some facts about rooftop solar panel deployment rates and the receipts

of residential energy credits that cover installment of residential solar panels, across income

quintiles. I use the 2015 RECS data to calculate the rooftop solar panel deployment rates for

each income quintile. I calculate the deployment rate for each income quintile by dividing the

number of households that generate power on-site using solar in that quintile by the total

number of households that generate power on-site using solar across all income groups. The

results reported in the fourth row show that the share of rooftop solar adopters increases

with income, with the top income quintile having almost half of the adopters.

The US has several government-sponsored incentive programs that reduce the cost for

people and businesses to use alternative energy sources. Eligible taxpayers meeting the

criteria get the credit amount deducted from their total tax liability. There are two types of

energy investment tax credits (ITCs) available to homeowners: the Energy Efficient Home

Improvement Credit (EEHIC) and the Residential Clean Energy Credit (RCEC). Taxpayers

can only use one or the other of these two residential energy tax credits in any one tax year.

The EEHIC offers a 30% ITC to cover some of the cost of eligible home improvements,

such as alterations to exterior doors, windows, and electric or natural gas heat pumps. The

RCEC, formerly known as the Residential Energy Credit, is an ITC that was extended

and renamed under the 2022 Inflation Reduction Act. The credit covers 30% of the cost

of installing solar panels, solar water heaters, geothermal heat pumps, small wind turbines,

geothermal heat pumps, fuel cells and battery storage technologies of at least 3 kilowatts

(kW) per hour (kWh). The credit is available for both existing homes and new construction,

but the home must be the taxpayer’s primary residence. The RCECs were enacted as part of

the Energy Policy Act of 2005 and were extended and expanded several times since then.

The final extension and expansion of the RCECs was under the Inflation Reduction Act,

increasing the credit back to 30%, where it was set to remain until 2032 before dropping to

26% in 2033 and then 22% in its final year, 2034. However, the most recent 2025 One Big

Beautiful Bill Act law eliminates RCECs completely after December 31, 2025. Importantly,

the RCECs have been non-refundable, meaning that the credit cannot exceed the taxpayer’s

tax liability. The non-refundability is a key feature of the RCECs that makes them regressive,

as only those with a tax liability, who tend to be wealthier, can benefit from the credit.

I use the IRS’s (2023) 2015 Statistics of Income (SOI) data to calculate the share of
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total value dispensed under each RCEC attributed to each income group. Unfortunately, the

publicly available SOI data does only provide income categories and the ranges for these

categories do not align perfectly with the income quintiles I use. Therefore, I group the income

categories in the SOI data to match the income quintiles as closely as possible. Specifically,

the upper income limits for the income categories I report from the SOI data are $20,000,
$40,000, $50,000, $100,000, and the lower limit for top 5% is $200,000. I calculate the share

of the amount of RCECs claimed by each income group by dividing the total amount of

residential energy credits issued to each group by the total amount of residential energy

credits issued to all income groups. The results in fourth row show that the share of RCECs

claimed by the income group increases with income, with the top income quintile receiving

almost half of all residential energy credits issued in the US.

These four statistics describe that higher income households consume more energy and thus

contribute more to pollution, adopt rooftop solar panels more, and receive more residential

energy credits than lower income households. Thus, having richer households adopt clean

technologies faster could yield the most emissions reductions. However, as I argued in the

introduction, the health co-benefits of reducing local air pollutants is greatest for the poorer

households who are more commonly exposed to air pollution. In order to provide evidence for

this claim, I use Dennin et al.’s (2024) latest Air Pollution Emission Experiments and Policy

Analysis model, the AP4 model, to calculate the county-level mortality damages per capita

for 2017. I match these mortality damages with county-level median income data from the

US Census Bureau’s (2022) 2017 ACS 5-Year Estimates. The results reported in the sixth

row show that mortality damages per capita are inversely related to income, with the bottom

income quintile experiencing the highest damages. Thus, reducing emissions by a unit would

prevent greater damages for the poorer households. These are some of the distributional facts

that motivate my research questions and which I will use for the calibration of my model.

2.1 Benefits of Residential Rooftop Solar Panel System Deploy-

ment

Deploying solar panels for on-site power generation has both private and social benefits.

The private benefits include reduced electricity bills, increased property values, and reduced

exposure to electricity price volatility. The social benefits include reduced emissions of

greenhouse gases and local air pollutants, reduced strain on the electricity grid, and increased

energy security. In this section, I describe these potential benefits of adopting solar panels for

on-site power generation, provide descriptive evidence on the private benefits, and describe

the potential social benefits that are not internalized by households.
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Table 2: Average 2015 energy expenditure shares of income groups in the US

Income Percentile Bottom 20% 20%-40% 40%-60% 60%-80% Top 20% Top 5%

Share of energy expenditure in total expenditure 8.5 6.4 5.0 4.2 3.3 2.2

Note: Reported shares are in percentages.

2.1.1 Private Benefits

First, I describe the private benefits of adopting solar panels for on-site power generation.

The most immediate private benefit is a reduction in household electricity expenditures. To

illustrate the magnitude of this accounting effect, I use the 2020 RECS. This dataset includes

information on annual household electricity expenditures and consumption, as well as an

indicator for whether the household has on-site solar generation.

Unsurprisingly, households with on-site solar report substantially lower grid electricity

expenditures. For example, a simple regression of electricity expenditures on a solar indicator

(presented in Appendix Table 12) shows that solar households spend roughly $700 less annually
on electricity. The average annual electricity expenditure in the RECS data is about $1,400,
so this represents a substantial reduction. However, this estimate should not be interpreted as

a causal effect: it simply reflects the accounting identity that households generating their own

electricity purchase less from the grid. Because solar adoption is endogenous to household

characteristics and policy incentives, these regressions are not identified. I therefore report

them only to illustrate magnitudes and relegate the tables to the Appendix A.

The key point for calibration is that these private pecuniary savings are meaningful in

household budgets. Households with lower income and wealth levels have greater marginal

utility of consumption and devote a larger share of their expenditures to energy. As a result,

an identical dollar reduction in electricity expenditure has larger welfare consequences for

poorer households. To discipline these heterogeneous effects in the model, I use the 2015

Consumer Expenditure Survey (CES) to calculate the energy expenditure shares of U.S.

households by income quintile. The results in Table 2 show that the bottom income quintile

devotes 8.5% of total expenditure to energy, compared with only 3.3% for the top quintile.

These differences in energy budget shares will be reflected in the calibration of household

heterogeneity in the model.

2.1.2 Social Benefits

Next, I describe the social benefits of adopting solar panels for residential on-site power

generation. I will focus on the environmental benefits of reducing emissions of local air

pollutants. For example in the US, the residential sector accounted for 15% of end-use energy
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consumption 2023 according to US Energy Information Administration (2024).

The residential sector is also a significant source of air pollutants regulated by the

Environmental Protection Agency (EPA) using human health-based and environment-based

criteria under the Clean Air Act. Particle pollution, also known as particulate matter (PM),

is a mixture of solid particles, such as dust, dirt, and soot, and liquid droplets found in the

air. Breathing in particle pollution can be harmful to human health, as it can cause heart

attacks, trouble breathing, lung cancer, and problems with babies.

Smaller particles, called PM2.5, pose the greatest health risks, because they can penetrate

deep into the lungs and the bloodstream. In 2020, fuel combustion by the residential sector

accounted for 10.9% and fuel combustion by the electric power generation sector accounted for

1.3% of PM2.5 emissions in the US, according to my calculations using EPA’s 2020 National

Emissions Inventory (NEI) data. Dennin et al. (2024) estimate that the marginal damage

associated with an additional ton of PM2.5 emissions in the US to be between $73,200 and

$133,000 per ton in 2020 dollars. Thus, given the significant share of PM2.5 emissions from

the residential sector, reducing emissions from this sector could yield health benefits for local

communities.

2.2 Cost of Residential Rooftop Solar Panel System Installations

The cost of installing solar panels for on-site power generation is a significant barrier to

adoption for many households. The total cost includes the following costs: the solar panels

themselves, the inverter, the mounting hardware, the wiring, the installation labor, and the

permitting and inspection. The price of solar panel installations has been decreasing over

time due to technological advancements and economies of scale, even before accounting for

government incentives.

Figure 1 shows the median price per watt and the median system size of residential solar

panels installations in the US from 2000 to 2022. The data is from National Renewable

Energy Laboratory’s (2023) 2022 Tracking the Sun report data, which covers all non-utility

scale solar panel installations in the US. The figure shows that the median price of residential

solar panels in the US has declined by almost 65% from 2000 to 2022. The median price per

watt declined by almost 65%, while the median system size increased by nearly 75%. This

joint trend highlights that, although unit costs fell, households increasingly adopted larger

systems, so the decline in total installation costs was slower.

Using these two series on the price and capacity of residential solar installations, I calculate

two median total costs of residential solar installation measures in the US from 2000 to 2022.

The first measure is the median gross total cost, which is the product of the median total
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Figure 1: Median price and size of residential solar panel system installations in the US per
quarter, 2000-2022

Note: The shaded area represents the 25th and 75th percentiles of the distribution of prices
of residential solar panel installations.

installation price per watt and the median system size. The second measure is the median

net total cost, which accounts for the state- and utility-level incentives and rebates deducted

from the gross total cost for residential solar installations. Importantly, the net total cost

measure does not account for the federal investment tax credit (ITC) for residential solar

installations, which is 30% of the gross total cost in 2022.

To assess affordability, Figure 2 reports the ratio of these cost measures to median

household income in the US, using data from the US Census Bureau’s (2022) ACS 5-Year

Estimates (Table S1901). The figure shows that the median gross cost of a residential solar

installation fell from about 65% of median household income in 2000 to around 36% in

2022. The gap between gross and net costs narrowed over time and eventually disappeared,

reflecting the expiration of many state- and utility-level support programs during this period.

The decline in residential solar installation costs is widely attributed to learning effects.

As more systems were produced and installed, both manufacturing and installation processes

became more efficient, resulting in lower prices over time.
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Figure 2: Ratio of median gross and median net system prices of residential solar PV systems
to median annual household income

2.3 Did Rooftop Solar Panel Installations Experience Learning

Effects?

The concept of learning effects suggests, as the cumulative experience with a technology

increases, the costs associated with that technology tend to decrease. The potential learning

effects from the increased adoption of technologies with positive externalities, such as rooftop

solar panel installations, can lead to lower costs for future adopters. Thus, subsidies to early

adopters of such technologies can have positive spillover effects on the costs of future adopters

and has been used to justify public funding for subsidizing early adopters. In the context

of rooftop solar panel installations, this could manifest in several ways, including improved

manufacturing processes, better installation techniques, and more efficient supply chains.

There are several empirical studies that have found evidence of learning effects in rooftop

solar panel installations. Nemet, O’Shaughnessy, et al. (2016) find that more experienced

installers consistently quote lower prices than novice installers, with all else being equal. For

instance, low-priced solar panel systems – the cheapest 10% of installs – are disproportionately

completed by installers with extensive prior installations, highlighting how accrued experience

translates into cost efficiency. O’Shaughnessy (2018) observed, in more concentrated markets,

average installation costs tend to be lower, presumably because high-volume installers climb

further down the learning curve and achieve economies of scale. However, if a market becomes
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too concentrated, competitive pressures may diminish, leading to lower prices in moderately

concentrated markets that balance scale benefits with competition. Nemet, Lu, et al. (2020)

find knowledge spillovers between firms within a county to be a significant and substantial

factor in reducing the costs of solar PV installations using data from 2008 to 2014. They find

that these spillovers reduce costs only for firms over a certain size threshold and geographic

spillovers within a firm across counties are also significant but smaller than the local between-

firm effects.

Overall, literature strongly links cumulative installation experience with cost reductions:

every doubling of US residential PV capacity has historically yielded a predictable price

decline (a “learning rate”), though estimates of the learning rate for soft costs vary from

study to study. Solar Energy Industries Association (2025) reports that the typical residential

solar PV installation prices almost halved since early 2010s. Bollinger and Gillingham (2023)

estimate that localized learning-by-doing accounted for a modest but measurable decline

in installation prices – on the order of $0.12 per watt reduction in soft costs from each

doubling of installer experience in California’s early rooftop solar market data. They also

found only limited spillovers between firms, meaning much of the learning was internal to each

installer’s operations. On the other hand, Gao, Rai, and Nemet (2022) find that traditional

learning-by-doing significantly reduced soft installations costs, although its effect is partly

masked by other learning mechanisms such as accounting for installers’ learning-by-searching

(e.g., innovation and R&D) and learning-by-interacting (e.g., knowledge spillovers via supplier

networks). Their findings suggest that the traditional learning-by-doing effect may not be as

dominant as previous literature suggests.

I test the hypothesis that the cost of residential solar panel installations has decreased

over time due to learning effects by regressing the median price of residential solar panel

installations on the cumulative installed capacity of residential solar panels in the US and

quantify the learning-by-doing effect. There are a variety of statistical models for learning

effects all based on the power law of learning, which states that the cost of a technology

decreases by a constant percentage with each doubling of cumulative production. I implement

the learning-by-doing effect as an exponential decay function, which is a common approach

in existing literature. The underlying model of learning I assume is as follows:

pt = p0 · I−ξ
t · exp(−λt), (1)

where pt is the net installation price of residential solar panels per watt installed capacity at

date t once rebates and incentives are taken into account, p0 is the initial installation price of

residential solar panels per watt installed capacity, It is the cumulative installed capacity of
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residential solar panels before date t – could either be a count or a size measure – ξ is the

learning-by-doing parameter that captures the rate of cost reduction with each doubling of

cumulative installed capacity, and λ is the rate of exogenous time decay that captures the

secular declines in PV costs due to global supply chain improvements, technological change,

and other factors unrelated to local learning-by-doing. The learning rate implied by this

model is given by 1− 2−ξ, which represents the percentage reduction in cost associated with

each doubling of cumulative installed capacity.

To allow for learning at multiple margins, I include cumulative experience at both the

state and firm levels. Let s(i) denote the locality of installation i and f(i) the responsible

installer firm. I estimate this model by regressing the natural logarithm of the installation

price of residential solar panels on the natural logarithm of the cumulative installed capacity

of residential solar panels.

To accommodate learning at multiple margins, I specify the following regression model:

log pi = αj(i)− ξstate log
(
Istates(i), t(i)−12

)
− ξfirm log

(
Ifirmf(i), t(i)−12

)
−λt(i)+γgs(i), t(i)+X ′

iθ+ εi, (2)

where, pi is the net installation price per watt of installation i, αj(i) are fixed effects for

the relevant entity j (state, county, or firm) depending on the specification, Istates(i), t−12 is the

cumulative installed residential capacity in state s(i) lagged 12 months, Ifirmf(i), t−12 is cumulative

installed capacity by firm f(i) lagged 12 months, ξstate and ξfirm are the corresponding learning

elasticities, t(i) is the installation month, λ is the exogenous time-decay parameter, gs(i), t(i)

measures contemporaneous incentive generosity in the state of installation, Xi is a vector of

installation-level controls (system size, hardware, financing), and εi is the error term.

In addition to the Ordinary Least Squares (OLS) estimates of equation 2, I consider

Instrumental Variable (IV) approaches to address potential endogeneity concerns. Cumulative

installations are likely endogenous due to simultaneity bias (e.g., areas or firms with lower

costs may attract more installations, making it look like learning when in fact it is selection

bias). Moreover, policy support, local demand shocks, or installer entry and exit could drive

both installations and prices. An IV approach could isolate the variation in installations that

comes from the exogenous policy changes. Finally, an IV approach could provide external

validity by leveraging variation across different policy contexts.

I instrument for local cumulative installed capacity using local-level policy changes as

an instrument. To capture the exogenous variation in incentives, I construct a monthly

binary shock variable that takes the value of 1 if a new residential solar policy starts in

location j in month t, and 0 otherwise. To construct this policy shock variable, I use the

North Carolina Clean Energy Technology Center’s (2025) Database of State Incentives for
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Renewables & Efficiency (DSIRE) data, which provides detailed information on state and

local policies and incentives for renewable energy and energy efficiency in the US. I provide a

detailed description of the construction of this instrument and the policy generosity measure

in Appendix A.1.2.

The IV design follows a standard two-stage least squares (2SLS) approach. The core

concern is that cumulative installed capacity at the state or county level may be endogenous:

areas with falling prices for other reasons may also attract more installations, biasing OLS

estimates downwards. I use lagged policy shocks as an instrument for local cumulative

installed capacity, to capture the introduction of new state or county incentives (rebates,

grants, tax credits, net metering measures), lagged by 12 months to ensure that they affect

the stock of cumulative installations but not contemporaneous prices directly. The first stage

regression links cumulative installed capacity (the endogenous regressor) to the lagged policy

shock, controlling for firm and time fixed effects. A strong first stage relationship is crucial

for the validity of the IV approach, as it ensures that the instrument is correlated with

the endogenous regressor and satisfy the relevance requirement, and can effectively isolate

exogenous variation in installations.

In the second stage, I estimate equation (2) using the predicted values of cumulative

installed capacity from the first stage regression, together with additional controls and fixed

effects. This approach isolates variation in learning-by-doing that is plausibly exogenous,

coming from policy shocks rather than unobserved demand or cost shocks. The exclusion

restriction assumes that lagged policy shocks affect installation prices only through their

effect on cumulative installed capacity, not directly. This assumption would be reasonable

if policies were targeted at adoption rather than subsidies to system prices conditional on

installation. However, the majority of the policies do indeed provide direct financial incentives

that affect net installation prices, potentially violating the exclusion restriction.

To ensure validity, I implement a refinement of the IV strategy. Specifically, I exploit

policy timing shocks by using lagged indicators for the onset of a new policy as instruments for

cumulative installations, while simultaneously controlling for the contemporaneous generosity

of all active incentives (e.g., rebate amount per watt). This design ensures that any direct

effect of subsidies on prices in period t is absorbed by controls, while variation in the timing

of policy introductions (lagged L months) provides exogenous shocks to the cumulative stock.

After this refinement, my instruments are indicators for whether a new policy incentive began

L months earlier, with contemporaneous generosity always included as a control. Identification

therefore relies on the assumption that, conditional on current subsidy generosity and fixed

effects, the lagged timing of a policy’s onset influences current installation prices only by

raising the cumulative stock of past installations (learning-by-doing), not by directly lowering
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system costs at the time of observation.

Thus, the first stage regression is as follows:

log(Istates(i), t−12) = µ s(i), t−12 + πZ s(i), t−12 + ρg s(i), t−12 + δt+W s(i), t−12
′θ + u s(i), t−12, (3)

where µ s(i), t−12 is a vector of entity fixed effects, Z s(i), t−12 is the policy shock variable for

entity s(i) lagged by 12 months, W s(i), t−12 is a vector of additional controls, and u s(i), t−12 is

the error term. The second stage regression is similar to equation 2, but uses the predicted

values of cumulative installed capacity from the first stage regression, and is as follows:

log pi = αj(i)−ξstate log
(
Îstates(i), t(i)−12

)
−ξfirm log

(
Ifirmf(i), t(i)−12

)
−λt(i)+γgs(i), t(i)+X ′

iθ+εi, (4)

where Îstate are the predicted values from the first stage regression. The causal effect of

learning is identified by ξ.

Equations (3) and (4) constitute a two-stage least squares (2SLS) design. In the first

stage, lagged policy shocks serve as instruments for cumulative installed capacity, exploiting

the timing of new incentive introductions as an exogenous source of variation in adoption.

I include contemporaneous policy generosity, gj,t, in both stages to absorb any direct price

effects of currently active subsidies so that the identifying variation arises only from past policy

onsets. I also control for a global time trend and a rich set of technological controls to account

for background cost declines and other market dynamics. The second stage then regresses log

net prices on the predicted cumulative installations from the first stage, controlling for the

same covariates and fixed effects. Under the exclusion restriction, the lagged policy shocks

affect current installation prices only through their effect on cumulative adoption, not directly,

once contemporaneous generosity and time trends are held constant. The coefficient ξ is thus

identified as the causal elasticity of installation prices with respect to cumulative installed

capacity which I interpret as the learning-by-doing effect.

Table 3 presents results. Columns (1), (3), (5), and (7) report OLS estimates with

different fixed effects (FE) specifications, while columns (2), (4), and (6) report IV estimates,

alternating OLS-IV within each entity level. State FE appear in columns (1)-(4), county FE

in (5)-(6), and firm FE in (7). The alternating structure highlights how coefficient magnitudes

shift when moving from OLS to IV specifications. The first-stage F-statistics in the IV

columns (2), (4), and (6) exceed 10, indicating strong instruments. The coefficients on lagged

cumulative installations at both the state and firm levels are the primary parameters of

interest, capturing learning effects.

The results in Table 3 show mixed but broadly supportive evidence for learning-by-doing

in residential rooftop solar panel installations. All specifications yield negative and statistically
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Table 3: Learning-by-Doing in Residential PV with Exogenous Unexplained Decay: OLS and
IV with Fixed Effects

Independent variables (1) (2) (3) (4) (5) (6) (7)
OLS IV OLS IV OLS IV OLS

log Cumulative Installs (Firm, 12m lag) −0.0073 −0.0073 −0.0097 −0.0097 −0.0073 −0.0073 −0.0110
(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0006)

log Cumulative Installs (State, 12m lag) 0.0226 0.1027 0.0244 0.0996 −0.0033
(0.0022) (0.0054) (0.0022) (0.0055) (0.0010)

log Cumulative Installs (County, 12m lag) 0.0145 0.1249
(0.0014) (0.0055)

t 0.0029 0.0029 0.0030 0.0030 0.0031 0.0031 0.0042
(0.0001) (0.0000) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000)

Policy Generosity ×10−4 −0.0034 −0.0034 −0.0034 −0.0034 −0.0091 −0.0091 −0.0021
(0.0002) (0.0002) (0.0002) (0.0002) (0.0005) (0.0005) (0.0002)

Has DC Optimizer 0.0303 0.0303 0.0347 0.0347 0.0105
(0.0022) (0.0022) (0.0022) (0.0022) (0.0022)

Ground Mounted 0.0229 0.0229 0.0308 0.0308 0.0673
(0.0053) (0.0069) (0.0054) (0.0069) (0.0047)

Has Microinverter 0.0098 0.0098 0.0109 0.0109 0.0635
(0.0021) (0.0024) (0.0022) (0.0024) (0.0023)

Inverter Loading Ratio 0.0418 0.0418 0.0425 0.0425 −0.0346
(0.0038) (0.0040) (0.0038) (0.0040) (0.0036)

log Size −0.1040 −0.1040 −0.0897 −0.0897 −0.0952
(0.0016) (0.0019) (0.0016) (0.0020) (0.0015)

Has Tracking Bin −0.3999 −0.3999 −0.4023 −0.4023 −0.0833
(0.0089) (0.0298) (0.0089) (0.0298) (0.0090)

First stage

Policy Shock (State, 12m lag) −0.7520 −0.7518
(0.0070) (0.0069)

Policy Shock (County, 12m lag) −1.1759
(0.0141)

F - Statistic 11,705.12 11,701.16 6,995.60
Number of observations 874,991 874,991 874,991 874,991 874,991 874,991 874,991
R2 0.060 0.013 0.053 0.013 0.058 0.008 0.054
Location FE state state state state county county firm

Notes: Robust standard errors in parentheses. Coefficients with robust standard errors in parentheses.Columns are numbered with
OLS and IV alternating. First-stage coefficients appear only under IV columns. “log Cumulative Installs (Firm/State/County,
12m lag)” correspond to log(Ifirmf(i),t−12), log(I

state
s(i),t−12), and log(Icountyc(i),t−12). “Policy Shock (State/County, 12m lag)” equals 1 if a

new residential PV incentive began in that entity 12 months earlier.

significant coefficients on lagged cumulative firm capacity, suggesting that more experienced

firms charge higher prices consistent with market power rather than learning. In contrast,

the state- and county-level cumulative installation coefficients are consistently positive and

significant when location fixed effects are included in columns (1)-(6), suggesting that local

market experience reduces prices. However, the magnitude and significance of these coefficients

vary across specifications, ranging from 0.0145 to 0.1249, corresponding to learning rate

estimates ranging from 1 to 8% cost reduction per doubling of cumulative capacity.

The difference in relative magnitudes of state- and county-level learning effects across the
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OLS and IV specifications is notable. The state-level learning elasticity is four times larger

in the IV specifications in columns (2) and (4) than in the OLS specifications in columns

(1) and (3). This suggests that OLS may understate state-level learning effects, potentially

due to simultaneity and measurement error biases. Instrumenting for cumulative installations

with lagged policy shocks appears to amplify the estimated learning effect, indicating that

exogenous policy-driven adoption has a stronger impact on cost reductions than organic

market growth. The difference between the OLS and IV estimates is even more pronounced

at the county level, where the IV estimate in column (6) is nearly six times larger than the

OLS estimate in column (5).

The estimates from the OLS specification with firm fixed effects in column (7) are puzzling:

both coefficients on cumulative firm capacity and cumulative state capacity are negative and

significant, suggesting that more firm or local experience leads to higher prices. This finding

contradicts the learning-by-doing hypothesis, which would predict that increased experience

leads to lower prices. This counterintuitive result may reflect unobserved heterogeneity among

firms, such as market power or strategic pricing behavior, rather than true learning effects.

Firms with more experience may have established reputations or customer bases that allow

them to charge higher prices, regardless of their actual cost structures and states with more

installations may have higher demand and thus higher prices, confounding the learning effect.

My preferred specification is the IV model with state fixed effects in column (2). This

specification balances the need to control for unobserved heterogeneity at the state level

while still allowing for meaningful variation in cumulative installations. The IV approach

helps address endogeneity concerns, and state-level fixed effects capture important policy and

market differences across states. The estimated state-level learning elasticity of 0.1027 implies

a learning rate of approximately 7% cost reduction per doubling of cumulative capacity.

The inclusion of an exogenous time decay term (λ) reveals a strong and highly significant

negative trend across all models, with magnitudes of −0.0015 to −0.003 per month. This

implies secular annual declines in PV costs of roughly 2-4% annually, independent of local

learning effects. The policy generosity coefficient (γ) is consistently negative, significant and

small, indicating that more generous current incentives are associated with lower prices, as

expected. Additional controls behave as expected: larger systems are cheaper per watt, while

technology upgrades such as optimizers and microinverters increase costs.

My regression results support the consensus view in the literature that rooftop solar panel

installations have experienced learning effects, and state-level experience and markets matter

more than purely local and firm learning. Moreover, exogenous time trends are a major driver

of cost declines, reflecting global supply chain improvements and technological change. The

contribution of these results to existing literature is to provide estimates for both OLS and
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IV specifications, confirming that OLS may overstate firm-level learning and that state-level

cumulative capacity passes IV robustness.

3 Model

Motivated by these empirical observations, I develop a heterogeneous agent dynamic

stochastic general equilibrium (DSGE) model with incomplete markets (i.e., Aiyagari-Bewley-

Huggett models, building on Bewley (1977), Huggett (1993), and Aiyagari (1994)), with

the inclusion of costly clean energy adoption decisions and environmental externalities. The

model has discrete time and infinite horizon. There is a continuum of households indexed by

i ∈ [0, 1]. Consumers supply an exogenous amount of labor, receive wage income, accumulate

assets in physical capital, and rent out capital to firms. The labor supply is stochastic and is

governed by an idiosyncratic shock. Consumers can self-insure by accumulating assets subject

to a borrowing constraint.

Households have preferences over consumption and ambient air pollution. Consumption

requires energy use, and energy use is assumed to be an affine function of final good

consumption. This assumption implies that the expenditure share of energy is larger for

households with lower consumption levels, which is an empirical fact documented in Table 2.

Consumers have two energy technology options: old fossil (dirty) energy and new renewable

(clean) energy. Energy produced by the two technologies are perfect substitutes for each other.

However, energy consumption through the old technology creates ambient air pollution – a

flow variable that results in utility damages to consumers – a negative externality to society.

Before the clean energy technology is available for household adoption, all households use the

old energy technology and the economy is in the initial steady state.

Once the aforementioned clean energy technology is available, consumers can switch to a

clean energy source by deploying technology. For example, a consumer can adopt rooftop

solar panels to generate electricity with a one-time investment cost, and after having adopted,

they will use the clean energy in perpetuity. The unit cost of clean energy is lower than the

unit cost of dirty energy, but the initial investment cost is very high. Specifically, the clean

energy technology investment is lumpy: it requires a large one-time and irreversible upfront

cost, and once the investment is made, it cannot be recovered. As the scale of clean energy

adoption increases, the investment cost decreases due to learning-by-doing spillover effects.

After a sufficiently long time, all households will have adopted the clean energy technology

and the economy will be in a new steady state: the terminal steady state.

Firms combine capital and labor to produce the final good (used for consumption and

investment). The negative externality generated by dirty energy consumption is not internal-
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ized by the firms or consumers, but leads to a fraction of output being lost due to damages.

The loss of utility will be greater for poorer households due to decreasing marginal utility

of consumption. Both firms and consumers act competitively and take prices as given. The

government collects labor income taxes and uses the revenue to subsidize the investment

cost of adopting clean energy technology and returns any excess tax revenues to consumers

lump-sum.

3.1 Consumers

Each household is infinitely lived and has preferences over consumption and ambient air

pollution. At time t, a household’s individual state is described by a vector zt defined as:

zt = (at, ℓt, st) ∈ Z,

where at ∈ A = [0,∞) is the household’s risk-free asset holding at the beginning of period

t, ℓt ∈ L is the idiosyncratic labor productivity endowment at time t, and st ∈ {0, 1} is the
household’s utilization status of the clean energy technology at time t, where st = 0 indicates

that the household is using the fuel combusting old energy technology and st = 1 is the new

clean energy technology. Define the measurable space (Z,B(Z)), where:

B(Z) = B(A)× P (L)× P ({0, 1}),

with B(A) being the Borel σ-algebra on A and P (·) the power set. The cross-sectional

distribution of households over the state space at time t is represented by a probability

measure Φt ∈ M, whereM is the set of all Borel probability measures on (Z, B(Z)). For
any measurable set B ∈ B(Z), Φt(B) is the fraction of households with states in B at time t.

I will denote Φt(B) by Φt when there is no ambiguity. Aggregate objects are computed as

integrals with respect to the invariant cross-sectional measure over states, following Huggett

(1993).

Each household supplies one unit of time endowment inelastically to the labor market

with labor productivity ℓt that follows a finite-state Markov chain with transition matrix

π(ℓ′|ℓ) and a unique invariant distribution Π(ℓ). Households derive utility from consumption

and ambient air pollution according to:

E0

[
∞∑
t=0

βtU(ct, Xt)

]
,

where β ∈ (0, 1) is the discount factor, ct is consumption at time t, and Xt denotes the
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aggregate ambient air pollution at time t. U(·, ·) is a strictly increasing and concave one-period

utility function in its first argument, strictly decreasing and convex in its second argument,

and E0 is the mathematical expectation conditioned on the consumer’s time-0 information.

The household budget constraint is:

ct + at+1 + q̄tet(1− st) + q
t
etst + pt(1− τt)St = wt(1− τ ℓ)ℓt + (1 + rt)at + Tt,

subject to the borrowing constraint:

at+1 ≥ a,

where e(·) is the energy consumption function that maps household’s consumption to energy

demand, wt and rt denote the wage and interest rate, respectively, q̄t and qt are the exogenous

unit energy prices under dirty and clean energy technologies, respectively, with q
t
< q̄t for

all t, sit ∈ {0, 1} is the household’s utilization status of the clean technology, where sit = 0

indicates that the household is using the fuel combusting old energy technology and sit = 1 is

the new clean energy technology, Si
t ∈ {0, 1} is the irreversible binary technology adoption

decision, pt is the one-time clean energy technology adoption cost, τt is the uniform tax credit

(subsidy) for the clean energy technology investment cost, τ ℓ is the exogenous labor income

tax rate, and Tt is the lump-sum transfer. The borrowing limit a ≤ 0 is exogenous and the

same for all households.

The discrete technology adoption choice is the main extension of the model from the

standard Aiyagari model. The adoption decision, St, is a binary choice that is made at the

beginning of each period. The adoption decision is irreversible and households who adopt

the clean technology in period t will use the clean technology in all future periods. This

irreversible adoption decision can be expressed as the difference between the household’s next

period utilization status of the clean technology and the current period’s utilization status of

the clean technology:

St = st+1 − st, with st+1 ≥ st for all t.

The assumption of irreversibility is a reasonable first step, but future work could consider

extensions such as depreciation and replacement of equipment.

3.2 Producers

There is a continuum of competitive firms (with measure normalized to one) producing

the consumption good using capital and labor. The production function is:

Yt = F (Kt, Lt),

21



where Yt is the final output, Kt and Lt are capital and labor demands, respectively, and F (·, ·)
is a constant returns to scale production function with inputs Kt and Lt. The representative

firm takes the factor prices rt and wt as given and maximizes its profits each period.

3.3 Government

The government collects tax revenue by taxing every household’s labor earnings at rate

τ ℓt , uses a portion of its tax revenue to finance the subsidies outlayed for technology adoption

investment at rate τt, and returns the remainder of its revenue as a uniform lump-sum transfer

Tt to each household in each period t. Thus, the government budget constraint is:∫
Z
τ ℓℓtdΦt =

∫
Z
(Tt + τtptSt) dΦt, ∀ t. (5)

3.4 Ambient Air Pollution

The ambient air pollution each period, Xt, is determined by the flow of energy consumption

during the period with the following mapping:

Xt = Ω

(∫
Z
e(ct)(1− st)dΦt

)
, (6)

where Ω(·) is an increasing function that maps the total period t energy consumption of old

energy technology users to ambient air pollution. In summary, the air pollution is a function

of the total energy consumption of the population that has not adopted low-carbon energy

technology, and dirty energy consumption only creates a negative externality within the same

period of its generation.

3.5 Learning-by-Doing Spillover

The one-time investment cost of the clean energy technology, pt, decreases as the cumulative

adoption of the clean energy technology increases due to learning-by-doing spillover effects.

As I introduced in subsection 2.3, the learning-by-doing spillover effects can be modeled using

a power-law of learning function. Specifically, I assume that the adoption cost is a function

of the cumulative adoption of the clean energy technology in the economy before period t,

denoted by Zt, defined as

Zt =

∫
Z
stdΦt, (7)
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and an exogenous time decay component, as stated in equation (1). Thus, the adoption cost

function is:

pt = p0 · Z−ξ
t · exp(−λt), (8)

where p0 > 0 is the initial adoption cost when the technology is first introduced, ξ > 0 is the

learning-by-doing parameter that captures the rate of cost reduction with each doubling of

cumulative adoption, and λ > 0 is the rate of exogenous time decay that captures the cost

declines unexplained by local learning-by-doing spillover effects, such as global supply chain

improvements and technological change.

The learning-by-doing spillover effects create a positive externality to society, because as

more households adopt the clean energy technology, the adoption cost decreases for all future

adopters. Modeling the learning-by-doing spillover allows me to evaluate the progressivity

of subsidies in a richer sense than just pecuniary transfers, as subsidies also accelerate the

learning-by-doing process and thus, the cost declines for future adopters.

3.6 Feasibility

In equilibrium, the market clearing conditions for the capital and labor markets are:

Kt =

∫
Z
atdΦt,

Lt =

∫
Z
ℓtdΦt

where the left-hand side of each equation is the total demand for the factor and the right-hand

side is the total supply of the factor. Denote the market-clearing quantities of aggregate

capital and labor by Kt and Lt, respectively. The goods market clearing condition is:∫
Z

[
ct + q̄e(ct)(1− st) + qe(ct)st + ptSt

]
dΦt = F (Kt, Lt) + (1− δ)Kt −Kt+1,

where δ is the depreciation rate of aggregate capital stock.

3.7 Recursive Formulation

The model can be formulated recursively. A household’s consumption, saving, and adoption

decision is governed by its three individual state variables, zt. In addition, there is one aggregate

state variable, the distribution of households across the individual state variables, Φt. The

ambient air pollution index is not a state variable because it is assumed to be a flow variable

and a function of only the current period’s aggregate emissions from dirty energy consumption,
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and thus, is a function of Φt alone. The definition of the initial and terminal recursive and

stationary competitive equilibria are provided in the Appendix B.1.

3.7.1 Transitional Dynamics

The main focus of the analysis is the transition between the initial steady state with no

clean energy technology available to the terminal steady state with every household utilizing

the clean energy technology. During the transition, households face the adoption choice

St ∈ {0, 1}, which is irreversible, such that:

st+1 = st + St ≥ st.

The Bellman equation of a household who has not adopted the clean technology and is in

state (at, ℓt, 0) at the beginning of period t is given by:

Vt(at, ℓt, 0; Φt) =

max


max
ct≥0

U(ct, Xt) + βEt

{
Vt+1[wt(1− τ ℓ)ℓt + (1 + rt)at + Tt − ct − q̄te(ct), ℓt+1, 0; Φt+1]|ℓt

}
,

max
ct≥0

U(ct, Xt) + βEt

{
Vt+1[wt(1− τ ℓ)ℓt + (1 + rt)at + Tt − ct − q̄te(ct)− pt(1− τt), ℓt+1, 1; Φt+1]|ℓt

}
,

subject to Φt+1 = Γt(Φt),

(9)

where Γt :M→M is the aggregate law of motion in period t governing the distribution of

households across the state variables’ tomorrow as a function of the distribution today, and Et

is the expectation operator conditioned on the consumer’s time t information. A household in

state st = 0 at the beginning of period t will choose to adopt the clean energy technology, i.e.,

set St = 1 and be in state st+1 = 1 at the beginning of period t+1, if the value of adopting is

greater than the value of not adopting, i.e., if the second term in the maximization operator

is greater than the first term. In the period that follows the decision to adopt, the household

is in state (at, ℓt, 1) at the beginning of period t and have the Bellman equation given by:

Vt(at, ℓt, 1; Φt) =max
ct≥0

U(ct, Xt) + βEt

{
Vt+1[wt(1− τ ℓ)ℓt + (1 + rt)at + Tt − ct − qte(ct), ℓt+1, 1; Φt+1]|ℓt

}
,

subject to Φt+1 = Γt(Φt).

(10)

Definition 1 Given an initial distribution Φ0 ∈ M, fiscal policies τ ℓ, {τt}∞t=0, and energy

prices {q̄t, qt}
∞
t=0, a competitive equilibrium is a sequence of: household value and policy
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functions {Vt, ct, at+1, St, st+1}∞t=0, aggregate factor stocks, {Kt, Lt}∞t=0, prices {wt, rt, pt}∞t=0,

government transfers {Tt}∞t=0, ambient air pollution levels {Xt}∞t=0, adoption stocks {Zt}∞t=0,

and distributions {Φt}∞t=0 ⊆M, such that for all t:

1. Household optimization. The household’s value function Vt solves the house-

hold Bellman equation given (wt, rt, pt, q̄t, qt, τ
ℓ, τt, Tt, Xt,Φt), with policy functions

(ct, at+1, st+1, St) satisfying the budget and borrowing constraints, and the adoption

irreversibility constraint.

2. Factor prices. Factor prices are determined by the marginal products of capital and

labor:

rt = FK(Kt, Lt),

wt = FL(Kt, Lt).

where Fj is the first order partial derivative of F with respect to its input j.

3. Government budget constraint. Government budget constraint holds with equality:∫
Z
τ ℓℓtdΦt = Tt +

∫
Z
τptSt(at, ℓt, st)dΦt.

4. Ambient air pollution. Given the distribution of households Φt and the policy

function ct(at, ℓt, st), the ambient air pollution level Xt satisfies:

Xt = Ω

(∫
Z
e(ct(at, ℓt, 0))dΦt

)
.

5. Cumulative adoption. Given the distribution of households Φt, the cumulative

adoption level Zt satisfies:

Zt =

∫
Z
stdΦt.

6. Adoption cost. Given the cumulative adoption level Zt, adoption cost satisfies:

pt = p0 · Z−ξ
t · exp(−λt).
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7. Market clearing. The factor markets clear:

Kt+1 =

∫
Z
at+1(at, ℓt, st)dΦt,

Lt =

∫
Z
ℓtdΦt,

and the goods market clearing condition:∫
Z

[
ct(at, ℓt, st) + at+1(at, ℓt, st) + q̄e(ct(at, ℓt, st))(1− st) + qe(ct(at, ℓt, st))st − ptSt(at, ℓt, st)

]
dΦt

= F (Kt, Lt) + (1− δ)Kt −Kt+1.

8. Aggregate law of motion. The aggregate law of motion Γt is induced by the transi-

tion probabilities and optimal policies at+1(a, ℓ, s), St(a, ℓ, s), and is explicitly stated in

Appendix B.3.

The model’s key innovations are the irreversible binary adoption decision with subsidies and

the learning-by-doing spillover effects that endogenously lower adoption costs as cumulative

adoption rises. Together, these features allow me to study the welfare implications of the clean

energy transition and the progressivity of subsidies in a richer sense than pecuniary transfers

alone: subsidies not only redistribute resources, but also accelerate learning-by-doing and

thereby reduce costs for future adopters. Furthermore, my model allows for heterogeneous

impacts of pollution on households with different income levels, which is another feature to

study the progressivity of subsidies. The next section describes the calibration of the model

for the quantitative analysis. Standard parameters are taken from existing literature, while

the parameters associated with the novel adoption and learning-by-doing mechanisms are

calibrated using microdata and reduced-form estimates.

4 Quantitative Analysis

Having laid out the structure of the model, I now turn to its quantitative implementation.

To evaluate the distributional and welfare effects of clean energy subsidies, the model must

be calibrated to match salient features of the US economy and the residential energy sector.

The quantitative analysis proceeds in two steps. First, I describe the parameterization of

functional forms and the calibration of the model parameters, distinguishing between those

taken from the macroeconomics literature, those pinned down by empirical moments from

household- and installation-level data, and those estimated in my own empirical analysis
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(such as the learning-by-doing elasticity). Second, I outline the computational methods used

to solve the model, in the initial and terminal steady states, and during the transition between

them under alternative policy scenarios. I defer the discussion of the pollution preference

block and its calibration to Section 6.2, where I revisit the baseline results with pollution

preferences activated.

I make functional assumptions for the household’s utility function, the final goods produc-

tion function, the dirty and clean energy production functions, the pollution function, and

the pollution damage function. I assume that the household’s preferences are represented by

a constant relative risk aversion (CRRA) utility function of the form:

u(c,X) =
c1−σ − 1

1− σ
− νmax{0, X − X̄}

(c/c̄)ω
, (11)

where σ > 0 is the coefficient of relative risk aversion for consumption, ν > 0 scales ambient

pollution to utility units, X̄ is the pollution threshold above which pollution starts to cause

utility losses, ω > 0 makes damages to amplify at lower consumption levels, and c̄ is a

reference consumption level used to normalize the pollution damage term. Even though the

disutility of pollution is separable from the utility of consumption, the pollution damage

term is nonseparable in consumption and pollution, as pollution damages are larger when

consumption is lower. Importantly, marginal utility of consumption remains positive, ∂u
∂c
> 0,

and diminishing, ∂2u
∂c2

< 0, for all c > 0 and X ≥ 0.

Energy consumption function is an affine function of goods consumption with a nonzero

intercept term, with parameters η0 and η1:

e(c) = η0 + η1c,

where η0 > 0 captures the baseline energy consumption that is independent of goods

consumption level, such as energy used for grid connection, while η1 captures the marginal

energy consumption associated with additional final goods consumption. The goods production

function is of Cobb-Douglas form:

F (K,L) = AKαL1−α,

where α is the output share of capital, and A is total factor productivity.

The ambient air pollution function is assumed to be linear in aggregate dirty energy
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consumption:

X = Ω

(∫
Z
e(ct)(1− st)dΦ

)
= γ

(∫
Z
e(ct)(1− st)dΦ

)
,

where γ is the pollution intensity parameter of dirty energy consumption.

4.1 Calibration

The parameters disciplining the model to match the US economy can be divided into three

categories: (i) standard macroeconomic parameters; (ii) parameters pinned down to match

moments from data; and, (iii) estimated parameters. One period in the model corresponds

to one year, and the initial steady state corresponds to the US economy in 2000, before the

widespread adoption of residential solar panels. I summarize the baseline calibration of the

structural parameters in Table 4 and provide details below.

4.1.1 Calibration for the Baseline Economy

In the baseline quantitative analysis, I shut down the pollution preference block in utility.

Household utility is u(c) = c1−σ−1
1−σ

and ambient pollution X does not affect utility in the

baseline. This choice isolates the adoption, affordability, and general equilibrium channels of

the residential solar transition.

Standard Macroeconomic Parameters

I begin by assigning values to the set of standard macroeconomic parameters that are

commonly used in the heterogeneous agent macroeconomics literature. I follow Aiyagari

(1994) and set the output share of capital, α, to 0.36, the discount factor, β, to 0.96, and the

capital depreciation rate, δ, to 0.08. I set the total factor productivity of goods production,

A, to 1. I assume that the idiosyncratic labor endowment process, ℓt, follows a persistent

autoregressive process with a persistence parameter of ρ 