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Abstract

I study the distributional and welfare effects of clean energy subsidies in the context
of US residential rooftop solar panel adoption. Although these subsidies are often
criticized as regressive because wealthier households claim most benefits, I show
that this conclusion changes once dynamic externalities from learning-by-doing and
pollution abatement are incorporated. Using installation-level data on residential
solar system installations, I provide new evidence of learning spillovers and estimate
learning elasticities to discipline a heterogeneous-agent general-equilibrium model
with incomplete markets, irreversible adoption, endogenous cost declines, and unequal
pollution damage exposures. Calibrated to US data, the model quantifies how alternative
subsidy designs and financing schemes affect adoption, inequality, and welfare. Uniform
refundable subsidies financed by a flat labor income tax raise aggregate welfare and
accelerate adoption, whereas progressive financing or nonrefundable credits reduce
support among lower-wealth households. When pollution damages are incorporated,
the same subsidy becomes universally welfare-improving and strongly progressive.
Accounting for dynamic spillovers and unequal pollution exposure overturns the view
that residential solar subsidies are inherently regressive.
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1 Introduction

One concern regarding low-carbon (“clean”) technology subsidies is that high-income
households claim them at a disproportionately high rate compared to lower income households
due to high initial costs. For example, on average, the top income quintile in the United
States (US) received more than 50% of investment tax credits for residential energy efficiency
improvements since introducing these credits, according the Internal Revenue Service’s (IRS)
Statistics of Income (SOI) data. If these subsidies that mainly go to the richer households
are funded by general taxpayer revenues, then they are pecuniary transfers from poor to rich
households. Such transfers are perceived as regressive in monetary terms, and as such, appear
inequitable and raise discontent among the populace.

At the same time, if we consider both the environmental and learning-by-doing external
economy effects alongside the general equilibrium effects, these policies that subsidize richer
households may have greater welfare benefits for poorer households than for richer ones. For
example, the health co-benefits of reducing local air pollutants associated with decreasing
greenhouse gas emissions are larger for poorer households who are more commonly exposed to
air pollution. Since wealthy households are responsible for the majority of residential emissions,
speeding up their transition to low-carbon technologies will yield the most environmental
benefits. Moreover, subsidizing early adopters who are likely to be wealthy could reduce the
high adoption costs at an accelerated rate, making adoption feasible for later adopters who
are likely to be less able to afford high adoption costs.

Motivated by this regressivity concern, I ask: How is low-carbon technology adoption
related to household income in the US? Focusing on residential rooftop solar panel adoption,
I show a positive correlation between income and the aforementioned adoption rates. If
richer households receive more of these subsidies, then what are the distributional welfare
implications of existing residential clean technology subsidies in the US over the joint income
and wealth distribution? By calibrating a model to reflect the US economy and policy in
the early days of the energy transition, I can quantify the equity and efficiency of the recent
energy transition policies that promote adoption of residential rooftop solar panels.

Finally, I ask: what is the best policy mix to achieve different policy objectives, such
as emissions reduction, welfare maximization, and transition speed, together with majority
support. I use my calibrated model to evaluate the optimal policy mix under these different
objectives and their majority support. First, I evaluate the overall welfare effects and political
feasibility of different financing strategies for a uniform subsidy payment schedule through
policies including the following: a uniform labor income tax, a progressive labor income tax,
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experiments, I evaluate the effectiveness of different subsidy programs’ ability to meet the
outlined policy objectives with an example being an income-capped subsidy program. These
comparative policy experiments can inform policy design and implementation of residential
energy efficiency improvement tax credits in the US and other countries.

Versions of the questions posed here have been addressed in literature. Most of the
previous research falls into two categories: (i) empirical analyses of the distributional effects
of environmental policies, and (ii) the macroeconomic studies on the unequal economic
consequences of climate change policies.

Borenstein and Davis (2024) have well documented the adoption patterns for various
low-carbon energy technologies and tax credit receipts for these technologies across income
groups in the US. However, their study neither goes beyond descriptive facts nor quantifies
dynamic general equilibrium effects, such as the indirect effects on relative prices, or the
non-pecuniary effects such as the health co-benefits of reducing local air pollutants. Vona
(2023) summarize the multidimensional impacts that climate policies have on well-being
which have been documented by various researchers and provides an overview of the empirical
literature. The consensus of this empirical literature is that subsidies to clean and energy-
efficient equipment exacerbate the regressivity of climate policies in the presence of financial
constraints by benefiting the wealthier households at the expense of less wealthy ones. In a
static modeling framework without uncertainty, Levinson (2019) show that taxing energy
use would be both more cost-effective and less regressive than subsidizing energy-efficient
appliances or taxing inefficient appliances. These static analyses ignore the demand response
that is the intended result of these policies.

I will contribute to these empirical analyses of who benefits from clean technology subsidies
by quantifying the overall distributional effects of these policies while taking into account
multidimensional effects using a model calibrated to reflect the US economy. Specifically, I
incorporate two additional indirect distributional effects of clean technology subsidies into a
general equilibrium model: (i) the learning-by-doing spillover effects of early adopters, and
(ii) the health co-benefits of reducing local air pollutants associated with reducing greenhouse
gas emissions. The first dimension that I incorporate in my analysis is the learning-by-doing
spillover effects from early adopters, who are likely to be wealthier. Gao, Rai, and Nemet
(2022) is one of few empirical economic analyses which find that learning through economies
of scale in production leads to cost reductions, not only in hardware costs, but also in
non-hardware costs in US residential solar installations. Secondly, reducing local air pollutant
emissions has well-known positive effects in terms of health co-benefits such as reducing local
air pollutants and improving health outcomes. Banzhaf, Ma, and Timmins (2019) summarize

the large body of economic literature that documents a strong positive correlation between



ambient air pollution, poverty, and race — the so-called environmental justice gap.

There are several quantitative macroeconomic studies that analyze the distributional
effects of climate policies in a general equilibrium framework. The majority of these studies
focus on the distributional effects of carbon pricing instead of low-carbon technology subsidies
as my paper does. Kénzig (2023), Benmir and Roman (2022), Fried, Novan, and Peterman
(2024), Fried, Novan, and Peterman (2018), and Belfiori, Carroll, and Hur (2024) are some
recent studies that analyze the distributional effects of carbon pricing.

Kéanzig (2023) find that a carbon tax is regressive using institutional features of the
European emissions trading system and high-frequency data. Benmir and Roman (2022)
study the economic consequences of carbon pricing that achieves the net-zero emissions target
in the US by 2050 and find that the policy induces large redistribution of income and wealth
from poor to rich households. Fried, Novan, and Peterman (2024) study the welfare and
inequality implications of different ways to return carbon tax revenue back to households
and find that the welfare-maximizing rebate uses two-thirds of carbon tax revenue to reduce
the distortianary capital income tax while using the remaining one-third to increase the
progressivity of the labor income tax. In an earlier work Fried, Novan, and Peterman (2018)
study how different approaches for recycling carbon tax revenue affect the welfare of current
and future generations. Their work highlights the importance of not only long-run outcomes,
but also the transitional welfare effects of how carbon tax revenues are recycled. Using
household expenditure and emissions data, Belfiori, Carroll, and Hur (2024) document that
low-income households have higher emissions per dollar spent than high-income households,
making a carbon tax regressive. Overall, the literature shows that carbon pricing is regressive,
but the regressivity can be mitigated by recycling the carbon tax revenue in a progressive
way.

Kuhn and Schlattmann (2024) is the closest work to this project in that they develop a
quantitative life-cycle model with heterogeneous adoption rates of carbon-neutral commitment
goods by income to quantify the reduction-redistribution trade-off of different policy mixes.
Lanteri and Rampini (2025) is another similar macroeconomic study of adoption of clean
technologies, but instead by heterogeneous firms in a dynamic general equilibrium model
of firm dynamics and clean technology adoption with financial constraints. They find that
financially constrained firms optimally invest in dirty new technologies as well as in older
technologies, resulting in a positive relation between firm size and energy efficiency. They
highlight that their proposed model could be a laboratory for studying the distributional
effects of environmental policy across firms, however they leave these exercises for future
work. The computational methods I propose in this paper could easily be extended to study

heterogeneous firms rather than households.



This paper makes three contributions to understanding the distributional effects of clean
energy subsidies in the US residential rooftop solar panel installation market. First, I provide
new empirical evidence on localized learning-by-doing in residential solar installations. Using
installation-level data merged with state and utility policy shocks, I find that each doubling
of cumulative installed capacity reduces system costs by about 7%. An instrumental-variable
strategy exploiting the timing of new policy introductions identifies learning effects that are
stronger when adoption is policy-driven rather than market-driven, confirming that subsidies
accelerate cost declines through learning spillovers.

Second, I develop a heterogeneous-agent dynamic general equilibrium model with in-
complete markets, irreversible technology adoption, adoption-driven cost reductions, and
unequal pollution damages. This framework captures both the private adoption incentives
and the general equilibrium feedbacks that shape how residential clean energy subsidies affect
adoption patterns, inequality, and welfare.

Third, I calibrate the model to reflect the US economy and policy environment in the
early days of the energy transition, using detailed data on household demographics, income
and wealth distributions, residential solar adoption patterns, and policy parameters. The
calibrated model delivers several novel quantitative findings: Uniform refundable subsidies
financed by a flat labor-income tax raise aggregate welfare and speed up adoption, with
94% of households benefiting. Financing subsidies through a progressive tax reduces overall
welfare gains and disproportionately lowers gains for low-wealth households by depressing
short-run wages and transfers. Nonrefundable tax credit, which mirrors the structure of the
U.S. federal residential solar credit, further excludes low-income households, but does not
slow down diffusion. Income-capped subsidies, while intended to improve fairness, slow down
adoption, reduce learning spillovers and generate aggregate welfare losses that especially hurt
the middle-wealth households.

When pollution damages are included, the nonrefundable uniform subsidy becomes
universally welfare-improving and strongly progressive, as cleaner air disproportionately
benefits poorer households. Together, these results show that the perceived regressivity
of residential solar subsidies reflects a partial-equilibrium perspective. Once dynamic cost
declines and pollution externalities are accounted for, the equity-efficiency trade-off in clean
energy policy becomes much weaker.

The remainder of the paper is structured as follows. In Section 2, I summarize the data
that motivates the research questions and provide background for the model. In Section
3, I outline the structural model that I use to answer my research questions. In Section
4, 1 describe the complete characterization of the model used for quantitative analysis, its

calibration and fit to the data, and present the baseline model simulations. In Section 5, I



Table 1: Descriptive statistics for the income quintiles in the US

Income Percentile Bottom 20% 20%-40% 40%-60% 60%-80% Top 20% Top 5%
Share of aggregate income 3.17 8.42 14.37 22.83 51.21 22.81
Share of residential energy consumption 12.59 18.16 13.07 19.75 24.42 12.01
Share of rooftop solar adoptors 0.53 3.42 9.26 16.87 43.75 26.19
Share of residential clean energy credits 0.48 4.11 4.08 21.75 48.99 20.59
Mortality damages per capita (2020 dollars pp) 4,811 3,910 3,103 2,769 2,354 NA

Notes: Reported shares and rates are in percentages, except for the mortality damage per capita
values, which is in 2020 US dollars per person (pp). NA indicates not available.

conduct policy experiments to evaluate the effectiveness of different policy mixes in achieving
the outlined policy objectives and majority support. Finally in Section 6, I conclude and

discuss the implications of the results for policy design and implementation.

2 Data and Empirical Motivation

To motivate my research questions, it is essential to understand the distributions of
residential energy consumption, adopters of on-site solar power generation, the receipts of
residential energy credits, ambient air pollution exposure, and energy expenditure shares
across income quintiles in the US. I summarize these distributions in Table 1 using various
cross-sectional data sources from the US in 2015. I focus on 2015 because it is the earliest
year for which data on all these variables is available.

First, using data from the US Census Bureau’s (2023) 2015 American Community Survey
(ACS) 5-Year Estimates, I construct income quintiles based on the upper income limits of
quintiles summarized in Table B19080. For 2015, these limits are $17,929, $35,583, $62,600,
$108,429, and the lower limit for top 5% is $146,778. I report the share of aggregate income
for each income quintile from the US Census Bureau’s (2023) 2015 ACS Table B19082 in the
first row of Table 1. The top income quintile accounts for more than half of the aggregate
income in the US.

Second, I use the US Energy Information Agency’s (2023) 2015 Residential Energy
Consumption Survey (RECS) data to calculate the share of aggregate residential energy
consumption for each income quintile. Annual household income is reported as a categorical
variable in the RECS data, and I group households according to the income quintile’s upper
limits as closely as possible. Thus, the upper income limits for the quintiles I report from the
RECS data are $20,000, $40,000, $60,000, $100,000, and the lower limit for the top 5% is
$140,000. I use the household weights provided in the RECS data for all of my calculations.

I calculate the share of aggregate residential energy consumption for each income quintile



through the following process: aggregating total energy consumption in British Thermal
Units (BTUs) for each group; calculating the national total, and calculating the share of each
group’s total as a proportion of the national total. The results reported in the second row
show that the top income quintile accounts for almost one quarter of the aggregate residential
energy consumption in the US.

Third, I summarize some facts about rooftop solar panel deployment rates and the receipts
of residential energy credits that cover installment of residential solar panels, across income
quintiles. I use the 2015 RECS data to calculate the rooftop solar panel deployment rates for
each income quintile. I calculate the deployment rate for each income quintile by dividing the
number of households that generate power on-site using solar in that quintile by the total
number of households that generate power on-site using solar across all income groups. The
results reported in the fourth row show that the share of rooftop solar adopters increases
with income, with the top income quintile having almost half of the adopters.

The US has several government-sponsored incentive programs that reduce the cost for
people and businesses to use alternative energy sources. Eligible taxpayers meeting the
criteria get the credit amount deducted from their total tax liability. There are two types of
energy investment tax credits (ITCs) available to homeowners: the Energy Efficient Home
Improvement Credit (EEHIC) and the Residential Clean Energy Credit (RCEC). Taxpayers
can only use one or the other of these two residential energy tax credits in any one tax year.

The EEHIC offers a 30% ITC to cover some of the cost of eligible home improvements,
such as alterations to exterior doors, windows, and electric or natural gas heat pumps. The
RCEC, formerly known as the Residential Energy Credit, is an ITC that was extended
and renamed under the 2022 Inflation Reduction Act. The credit covers 30% of the cost
of installing solar panels, solar water heaters, geothermal heat pumps, small wind turbines,
geothermal heat pumps, fuel cells and battery storage technologies of at least 3 kilowatts
(kW) per hour (kWh). The credit is available for both existing homes and new construction,
but the home must be the taxpayer’s primary residence. The RCECs were enacted as part of
the Energy Policy Act of 2005 and were extended and expanded several times since then.
The final extension and expansion of the RCECs was under the Inflation Reduction Act,
increasing the credit back to 30%, where it was set to remain until 2032 before dropping to
26% in 2033 and then 22% in its final year, 2034. However, the most recent 2025 One Big
Beautiful Bill Act law eliminates RCECs completely after December 31, 2025. Importantly,
the RCECs have been non-refundable, meaning that the credit cannot exceed the taxpayer’s
tax liability. The non-refundability is a key feature of the RCECs that makes them regressive,
as only those with a tax liability, who tend to be wealthier, can benefit from the credit.

I use the IRS’s (2023) 2015 Statistics of Income (SOI) data to calculate the share of



total value dispensed under each RCEC attributed to each income group. Unfortunately, the
publicly available SOI data does only provide income categories and the ranges for these
categories do not align perfectly with the income quintiles I use. Therefore, I group the income
categories in the SOI data to match the income quintiles as closely as possible. Specifically,
the upper income limits for the income categories I report from the SOI data are $20,000,
$40,000, $50,000, $100,000, and the lower limit for top 5% is $200,000. I calculate the share
of the amount of RCECs claimed by each income group by dividing the total amount of
residential energy credits issued to each group by the total amount of residential energy
credits issued to all income groups. The results in fourth row show that the share of RCECs
claimed by the income group increases with income, with the top income quintile receiving
almost half of all residential energy credits issued in the US.

These four statistics describe that higher income households consume more energy and thus
contribute more to pollution, adopt rooftop solar panels more, and receive more residential
energy credits than lower income households. Thus, having richer households adopt clean
technologies faster could yield the most emissions reductions. However, as I argued in the
introduction, the health co-benefits of reducing local air pollutants is greatest for the poorer
households who are more commonly exposed to air pollution. In order to provide evidence for
this claim, I use Dennin et al.’s (2024) latest Air Pollution Emission Experiments and Policy
Analysis model, the AP4 model, to calculate the county-level mortality damages per capita
for 2017. I match these mortality damages with county-level median income data from the
US Census Bureau’s (2022) 2017 ACS 5-Year Estimates. The results reported in the sixth
row show that mortality damages per capita are inversely related to income, with the bottom
income quintile experiencing the highest damages. Thus, reducing emissions by a unit would
prevent greater damages for the poorer households. These are some of the distributional facts

that motivate my research questions and which I will use for the calibration of my model.

2.1 Benefits of Residential Rooftop Solar Panel System Deploy-

ment

Deploying solar panels for on-site power generation has both private and social benefits.
The private benefits include reduced electricity bills, increased property values, and reduced
exposure to electricity price volatility. The social benefits include reduced emissions of
greenhouse gases and local air pollutants, reduced strain on the electricity grid, and increased
energy security. In this section, I describe these potential benefits of adopting solar panels for
on-site power generation, provide descriptive evidence on the private benefits, and describe

the potential social benefits that are not internalized by households.



Table 2: Average 2015 energy expenditure shares of income groups in the US

Income Percentile Bottom 20% 20%-40% 40%-60% 60%-80% Top 20% Top 5%

Share of energy expenditure in total expenditure 8.5 6.4 5.0 4.2 3.3 2.2

Note: Reported shares are in percentages.

2.1.1 Private Benefits

First, I describe the private benefits of adopting solar panels for on-site power generation.
The most immediate private benefit is a reduction in household electricity expenditures. To
illustrate the magnitude of this accounting effect, I use the 2020 RECS. This dataset includes
information on annual household electricity expenditures and consumption, as well as an
indicator for whether the household has on-site solar generation.

Unsurprisingly, households with on-site solar report substantially lower grid electricity
expenditures. For example, a simple regression of electricity expenditures on a solar indicator
(presented in Appendix Table 12) shows that solar households spend roughly $700 less annually
on electricity. The average annual electricity expenditure in the RECS data is about $1,400,
so this represents a substantial reduction. However, this estimate should not be interpreted as
a causal effect: it simply reflects the accounting identity that households generating their own
electricity purchase less from the grid. Because solar adoption is endogenous to household
characteristics and policy incentives, these regressions are not identified. I therefore report
them only to illustrate magnitudes and relegate the tables to the Appendix A.

The key point for calibration is that these private pecuniary savings are meaningful in
household budgets. Households with lower income and wealth levels have greater marginal
utility of consumption and devote a larger share of their expenditures to energy. As a result,
an identical dollar reduction in electricity expenditure has larger welfare consequences for
poorer households. To discipline these heterogeneous effects in the model, I use the 2015
Consumer Expenditure Survey (CES) to calculate the energy expenditure shares of U.S.
households by income quintile. The results in Table 2 show that the bottom income quintile
devotes 8.5% of total expenditure to energy, compared with only 3.3% for the top quintile.
These differences in energy budget shares will be reflected in the calibration of household

heterogeneity in the model.

2.1.2 Social Benefits

Next, I describe the social benefits of adopting solar panels for residential on-site power
generation. I will focus on the environmental benefits of reducing emissions of local air

pollutants. For example in the US, the residential sector accounted for 15% of end-use energy



consumption 2023 according to US Energy Information Administration (2024).

The residential sector is also a significant source of air pollutants regulated by the
Environmental Protection Agency (EPA) using human health-based and environment-based
criteria under the Clean Air Act. Particle pollution, also known as particulate matter (PM),
is a mixture of solid particles, such as dust, dirt, and soot, and liquid droplets found in the
air. Breathing in particle pollution can be harmful to human health, as it can cause heart
attacks, trouble breathing, lung cancer, and problems with babies.

Smaller particles, called PMsy 5, pose the greatest health risks, because they can penetrate
deep into the lungs and the bloodstream. In 2020, fuel combustion by the residential sector
accounted for 10.9% and fuel combustion by the electric power generation sector accounted for
1.3% of PMjy 5 emissions in the US, according to my calculations using EPA’s 2020 National
Emissions Inventory (NEI) data. Dennin et al. (2024) estimate that the marginal damage
associated with an additional ton of PM, 5 emissions in the US to be between $73,200 and
$133,000 per ton in 2020 dollars. Thus, given the significant share of PMjy 5 emissions from
the residential sector, reducing emissions from this sector could yield health benefits for local

communities.

2.2 Cost of Residential Rooftop Solar Panel System Installations

The cost of installing solar panels for on-site power generation is a significant barrier to
adoption for many households. The total cost includes the following costs: the solar panels
themselves, the inverter, the mounting hardware, the wiring, the installation labor, and the
permitting and inspection. The price of solar panel installations has been decreasing over
time due to technological advancements and economies of scale, even before accounting for
government incentives.

Figure 1 shows the median price per watt and the median system size of residential solar
panels installations in the US from 2000 to 2022. The data is from National Renewable
Energy Laboratory’s (2023) 2022 Tracking the Sun report data, which covers all non-utility
scale solar panel installations in the US. The figure shows that the median price of residential
solar panels in the US has declined by almost 65% from 2000 to 2022. The median price per
watt declined by almost 65%), while the median system size increased by nearly 75%. This
joint trend highlights that, although unit costs fell, households increasingly adopted larger
systems, so the decline in total installation costs was slower.

Using these two series on the price and capacity of residential solar installations, I calculate
two median total costs of residential solar installation measures in the US from 2000 to 2022.

The first measure is the median gross total cost, which is the product of the median total
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Figure 1: Median price and size of residential solar panel system installations in the US per
quarter, 2000-2022
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Note: The shaded area represents the 25th and 75th percentiles of the distribution of prices
of residential solar panel installations.

installation price per watt and the median system size. The second measure is the median
net total cost, which accounts for the state- and utility-level incentives and rebates deducted
from the gross total cost for residential solar installations. Importantly, the net total cost
measure does not account for the federal investment tax credit (ITC) for residential solar
installations, which is 30% of the gross total cost in 2022.

To assess affordability, Figure 2 reports the ratio of these cost measures to median
household income in the US, using data from the US Census Bureau’s (2022) ACS 5-Year
Estimates (Table S1901). The figure shows that the median gross cost of a residential solar
installation fell from about 65% of median household income in 2000 to around 36% in
2022. The gap between gross and net costs narrowed over time and eventually disappeared,
reflecting the expiration of many state- and utility-level support programs during this period.

The decline in residential solar installation costs is widely attributed to learning effects.
As more systems were produced and installed, both manufacturing and installation processes

became more efficient, resulting in lower prices over time.
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Figure 2: Ratio of median gross and median net system prices of residential solar PV systems
to median annual household income
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2.3 Did Rooftop Solar Panel Installations Experience Learning
Effects?

The concept of learning effects suggests, as the cumulative experience with a technology
increases, the costs associated with that technology tend to decrease. The potential learning
effects from the increased adoption of technologies with positive externalities, such as rooftop
solar panel installations, can lead to lower costs for future adopters. Thus, subsidies to early
adopters of such technologies can have positive spillover effects on the costs of future adopters
and has been used to justify public funding for subsidizing early adopters. In the context
of rooftop solar panel installations, this could manifest in several ways, including improved
manufacturing processes, better installation techniques, and more efficient supply chains.

There are several empirical studies that have found evidence of learning effects in rooftop
solar panel installations. Nemet, O’Shaughnessy, et al. (2016) find that more experienced
installers consistently quote lower prices than novice installers, with all else being equal. For
instance, low-priced solar panel systems — the cheapest 10% of installs — are disproportionately
completed by installers with extensive prior installations, highlighting how accrued experience
translates into cost efficiency. O’Shaughnessy (2018) observed, in more concentrated markets,
average installation costs tend to be lower, presumably because high-volume installers climb

further down the learning curve and achieve economies of scale. However, if a market becomes
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too concentrated, competitive pressures may diminish, leading to lower prices in moderately
concentrated markets that balance scale benefits with competition. Nemet, Lu, et al. (2020)
find knowledge spillovers between firms within a county to be a significant and substantial
factor in reducing the costs of solar PV installations using data from 2008 to 2014. They find
that these spillovers reduce costs only for firms over a certain size threshold and geographic
spillovers within a firm across counties are also significant but smaller than the local between-
firm effects.

Overall, literature strongly links cumulative installation experience with cost reductions:
every doubling of US residential PV capacity has historically yielded a predictable price
decline (a “learning rate”), though estimates of the learning rate for soft costs vary from
study to study. Solar Energy Industries Association (2025) reports that the typical residential
solar PV installation prices almost halved since early 2010s. Bollinger and Gillingham (2023)
estimate that localized learning-by-doing accounted for a modest but measurable decline
in installation prices — on the order of $0.12 per watt reduction in soft costs from each
doubling of installer experience in California’s early rooftop solar market data. They also
found only limited spillovers between firms, meaning much of the learning was internal to each
installer’s operations. On the other hand, Gao, Rai, and Nemet (2022) find that traditional
learning-by-doing significantly reduced soft installations costs, although its effect is partly
masked by other learning mechanisms such as accounting for installers’ learning-by-searching
(e.g., innovation and R&D) and learning-by-interacting (e.g., knowledge spillovers via supplier
networks). Their findings suggest that the traditional learning-by-doing effect may not be as
dominant as previous literature suggests.

I test the hypothesis that the cost of residential solar panel installations has decreased
over time due to learning effects by regressing the median price of residential solar panel
installations on the cumulative installed capacity of residential solar panels in the US and
quantify the learning-by-doing effect. There are a variety of statistical models for learning
effects all based on the power law of learning, which states that the cost of a technology
decreases by a constant percentage with each doubling of cumulative production. I implement
the learning-by-doing effect as an exponential decay function, which is a common approach

in existing literature. The underlying model of learning I assume is as follows:

pe=po-T; " - exp(—A\t), (1)

where p; is the net installation price of residential solar panels per watt installed capacity at
date t once rebates and incentives are taken into account, pq is the initial installation price of

residential solar panels per watt installed capacity, Z; is the cumulative installed capacity of
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residential solar panels before date ¢ — could either be a count or a size measure — £ is the
learning-by-doing parameter that captures the rate of cost reduction with each doubling of
cumulative installed capacity, and A\ is the rate of exogenous time decay that captures the
secular declines in PV costs due to global supply chain improvements, technological change,
and other factors unrelated to local learning-by-doing. The learning rate implied by this
model is given by 1 — 27¢, which represents the percentage reduction in cost associated with
each doubling of cumulative installed capacity.

To allow for learning at multiple margins, I include cumulative experience at both the
state and firm levels. Let s(i) denote the locality of installation ¢ and f(i) the responsible
installer firm. I estimate this model by regressing the natural logarithm of the installation
price of residential solar panels on the natural logarithm of the cumulative installed capacity
of residential solar panels.

To accommodate learning at multiple margins, I specify the following regression model:

log p; = ayjsy — € Log (T3 iy—12) — €™ 108 (T3 ¢(iy-12) — M(0) + 7950, 000) + X{0 + €4, (2)

where, p; is the net installation price per watt of installation 4, a;(;) are fixed effects for
the relevant entity j (state, county, or firm) depending on the specification, IEE?)t,et—m is the
cumulative installed residential capacity in state s(i) lagged 12 months, I?{Sl +—19 18 cumulative
installed capacity by firm f(i) lagged 12 months, £ and 8™ are the corresponding learning
elasticities, ¢(7) is the installation month, A is the exogenous time-decay parameter, gs), )
measures contemporaneous incentive generosity in the state of installation, X; is a vector of
installation-level controls (system size, hardware, financing), and ¢; is the error term.

In addition to the Ordinary Least Squares (OLS) estimates of equation 2, I consider
Instrumental Variable (IV) approaches to address potential endogeneity concerns. Cumulative
installations are likely endogenous due to simultaneity bias (e.g., areas or firms with lower
costs may attract more installations, making it look like learning when in fact it is selection
bias). Moreover, policy support, local demand shocks, or installer entry and exit could drive
both installations and prices. An IV approach could isolate the variation in installations that
comes from the exogenous policy changes. Finally, an IV approach could provide external
validity by leveraging variation across different policy contexts.

I instrument for local cumulative installed capacity using local-level policy changes as
an instrument. To capture the exogenous variation in incentives, I construct a monthly
binary shock variable that takes the value of 1 if a new residential solar policy starts in
location j in month ¢, and 0 otherwise. To construct this policy shock variable, I use the

North Carolina Clean Energy Technology Center’s (2025) Database of State Incentives for
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Renewables & Efficiency (DSIRE) data, which provides detailed information on state and
local policies and incentives for renewable energy and energy efficiency in the US. I provide a
detailed description of the construction of this instrument and the policy generosity measure
in Appendix A.1.2.

The IV design follows a standard two-stage least squares (2SLS) approach. The core
concern is that cumulative installed capacity at the state or county level may be endogenous:
areas with falling prices for other reasons may also attract more installations, biasing OLS
estimates downwards. I use lagged policy shocks as an instrument for local cumulative
installed capacity, to capture the introduction of new state or county incentives (rebates,
grants, tax credits, net metering measures), lagged by 12 months to ensure that they affect
the stock of cumulative installations but not contemporaneous prices directly. The first stage
regression links cumulative installed capacity (the endogenous regressor) to the lagged policy
shock, controlling for firm and time fixed effects. A strong first stage relationship is crucial
for the validity of the IV approach, as it ensures that the instrument is correlated with
the endogenous regressor and satisfy the relevance requirement, and can effectively isolate
exogenous variation in installations.

In the second stage, I estimate equation (2) using the predicted values of cumulative
installed capacity from the first stage regression, together with additional controls and fixed
effects. This approach isolates variation in learning-by-doing that is plausibly exogenous,
coming from policy shocks rather than unobserved demand or cost shocks. The exclusion
restriction assumes that lagged policy shocks affect installation prices only through their
effect on cumulative installed capacity, not directly. This assumption would be reasonable
if policies were targeted at adoption rather than subsidies to system prices conditional on
installation. However, the majority of the policies do indeed provide direct financial incentives
that affect net installation prices, potentially violating the exclusion restriction.

To ensure validity, I implement a refinement of the IV strategy. Specifically, I exploit
policy timing shocks by using lagged indicators for the onset of a new policy as instruments for
cumulative installations, while simultaneously controlling for the contemporaneous generosity
of all active incentives (e.g., rebate amount per watt). This design ensures that any direct
effect of subsidies on prices in period t is absorbed by controls, while variation in the timing
of policy introductions (lagged L months) provides exogenous shocks to the cumulative stock.
After this refinement, my instruments are indicators for whether a new policy incentive began
L months earlier, with contemporaneous generosity always included as a control. Identification
therefore relies on the assumption that, conditional on current subsidy generosity and fixed
effects, the lagged timing of a policy’s onset influences current installation prices only by

raising the cumulative stock of past installations (learning-by-doing), not by directly lowering
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system costs at the time of observation.

Thus, the first stage regression is as follows:
IOg(Isst(%?t—u) =[5y, 1—12 + TZ (), 1212 + PG sy, 1—12 + 0t + Wy 1-12'0 + sy, 1-12, (3)

where 114,112 is a vector of entity fixed effects, Z ) ;12 is the policy shock variable for
entity s(7) lagged by 12 months, W 4(),t—12 is a vector of additional controls, and wu ) ;12 is
the error term. The second stage regression is similar to equation 2, but uses the predicted

values of cumulative installed capacity from the first stage regression, and is as follows:
IOg p; = aj(i) _Sstate log (Istates(i)7 t(i)712) _gﬁrm log (Z’Jf}rzr;l7 t(i)—12) —)\t(z)+”ygs(z)7 t(z)+Xl’¢9+€Z, (4)

where Z5%% are the predicted values from the first stage regression. The causal effect of
learning is identified by &.

Equations (3) and (4) constitute a two-stage least squares (2SLS) design. In the first
stage, lagged policy shocks serve as instruments for cumulative installed capacity, exploiting
the timing of new incentive introductions as an exogenous source of variation in adoption.
I include contemporaneous policy generosity, g;, in both stages to absorb any direct price
effects of currently active subsidies so that the identifying variation arises only from past policy
onsets. I also control for a global time trend and a rich set of technological controls to account
for background cost declines and other market dynamics. The second stage then regresses log
net prices on the predicted cumulative installations from the first stage, controlling for the
same covariates and fixed effects. Under the exclusion restriction, the lagged policy shocks
affect current installation prices only through their effect on cumulative adoption, not directly,
once contemporaneous generosity and time trends are held constant. The coefficient £ is thus
identified as the causal elasticity of installation prices with respect to cumulative installed
capacity which I interpret as the learning-by-doing effect.

Table 3 presents results. Columns (1), (3), (5), and (7) report OLS estimates with
different fixed effects (FE) specifications, while columns (2), (4), and (6) report IV estimates,
alternating OLS-IV within each entity level. State FE appear in columns (1)-(4), county FE
in (5)-(6), and firm FE in (7). The alternating structure highlights how coefficient magnitudes
shift when moving from OLS to IV specifications. The first-stage F-statistics in the IV
columns (2), (4), and (6) exceed 10, indicating strong instruments. The coefficients on lagged
cumulative installations at both the state and firm levels are the primary parameters of
interest, capturing learning effects.

The results in Table 3 show mixed but broadly supportive evidence for learning-by-doing

in residential rooftop solar panel installations. All specifications yield negative and statistically
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Table 3: Learning-by-Doing in Residential PV with Exogenous Unexplained Decay: OLS and
IV with Fixed Effects

Independent variables (1) (2) (3) (4) (5) (6) (7)
OLS 1A% OLS v OLS v OLS
log Cumulative Installs (Firm, 12m lag) —0.0073  —0.0073 —0.0097  —0.0097 —0.0073 —0.0073 —0.0110
(0.0003)  (0.0003)  (0.0003)  (0.0003)  (0.0003) (0.0003)  (0.0006)
log Cumulative Installs (State, 12m lag) 0.0226 0.1027 0.0244 0.0996 —0.0033
(0.0022)  (0.0054)  (0.0022)  (0.0055) (0.0010)
log Cumulative Installs (County, 12m lag) 0.0145 0.1249
(0.0014)  (0.0055)
t 0.0029 0.0029 0.0030 0.0030 0.0031 0.0031 0.0042
(0.0001)  (0.0000)  (0.0001)  (0.0000)  (0.0000) (0.0000)  (0.0000)
Policy Generosity x10~* —0.0034  —0.0034 —0.0034 —0.0034  —0.0091 —0.0091 —0.0021
(0.0002)  (0.0002)  (0.0002)  (0.0002)  (0.0005) (0.0005) (0.0002)
Has DC Optimizer 0.0303 0.0303 0.0347 0.0347 0.0105
(0.0022)  (0.0022) (0.0022)  (0.0022)  (0.0022)
Ground Mounted 0.0229 0.0229 0.0308 0.0308 0.0673
(0.0053)  (0.0069) (0.0054)  (0.0069)  (0.0047)
Has Microinverter 0.0098 0.0098 0.0109 0.0109 0.0635
(0.0021)  (0.0024) (0.0022)  (0.0024)  (0.0023)
Inverter Loading Ratio 0.0418 0.0418 0.0425 0.0425 —0.0346
(0.0038)  (0.0040) (0.0038)  (0.0040)  (0.0036)
log Size —0.1040 —0.1040 —0.0897 —0.0897 —0.0952
(0.0016)  (0.0019) (0.0016)  (0.0020)  (0.0015)
Has Tracking Bin —0.3999  —0.3999 —0.4023 —0.4023 —0.0833
(0.0089)  (0.0298) (0.0089)  (0.0298)  (0.0090)

First stage

Policy Shock (State, 12m lag) —0.7520 —0.7518

(0.0070) (0.0069)
Policy Shock (County, 12m lag) —1.1759

(0.0141)

F - Statistic 11,705.12 11,701.16 6,995.60
Number of observations 874,991 874,991 874,991 874,991 874,991 874,991 874,991
R? 0.060 0.013 0.053 0.013 0.058 0.008 0.054
Location FE state state state state county county firm

Notes: Robust standard errors in parentheses. Coefficients with robust standard errors in parentheses.Columns are numbered with

OLS and IV alternating. First-stage coefficients appear only under IV columns. “log Cumulative Installs (Firm/State/County,

12m lag)” correspond to log(I;“(rg‘yt_u)7 log(Z5(3S_12), and log(IZE)i‘)litZw). “Policy Shock (State/County, 12m lag)” equals 1 if a

new residential PV incentive began in that entity 12 months earlier.

significant coefficients on lagged cumulative firm capacity, suggesting that more experienced
firms charge higher prices consistent with market power rather than learning. In contrast,
the state- and county-level cumulative installation coefficients are consistently positive and
significant when location fixed effects are included in columns (1)-(6), suggesting that local
market experience reduces prices. However, the magnitude and significance of these coefficients
vary across specifications, ranging from 0.0145 to 0.1249, corresponding to learning rate
estimates ranging from 1 to 8% cost reduction per doubling of cumulative capacity.

The difference in relative magnitudes of state- and county-level learning effects across the

17



OLS and IV specifications is notable. The state-level learning elasticity is four times larger
in the IV specifications in columns (2) and (4) than in the OLS specifications in columns
(1) and (3). This suggests that OLS may understate state-level learning effects, potentially
due to simultaneity and measurement error biases. Instrumenting for cumulative installations
with lagged policy shocks appears to amplify the estimated learning effect, indicating that
exogenous policy-driven adoption has a stronger impact on cost reductions than organic
market growth. The difference between the OLS and IV estimates is even more pronounced
at the county level, where the IV estimate in column (6) is nearly six times larger than the
OLS estimate in column (5).

The estimates from the OLS specification with firm fixed effects in column (7) are puzzling:
both coefficients on cumulative firm capacity and cumulative state capacity are negative and
significant, suggesting that more firm or local experience leads to higher prices. This finding
contradicts the learning-by-doing hypothesis, which would predict that increased experience
leads to lower prices. This counterintuitive result may reflect unobserved heterogeneity among
firms, such as market power or strategic pricing behavior, rather than true learning effects.
Firms with more experience may have established reputations or customer bases that allow
them to charge higher prices, regardless of their actual cost structures and states with more
installations may have higher demand and thus higher prices, confounding the learning effect.

My preferred specification is the IV model with state fixed effects in column (2). This
specification balances the need to control for unobserved heterogeneity at the state level
while still allowing for meaningful variation in cumulative installations. The IV approach
helps address endogeneity concerns, and state-level fixed effects capture important policy and
market differences across states. The estimated state-level learning elasticity of 0.1027 implies
a learning rate of approximately 7% cost reduction per doubling of cumulative capacity.

The inclusion of an exogenous time decay term (\) reveals a strong and highly significant
negative trend across all models, with magnitudes of —0.0015 to —0.003 per month. This
implies secular annual declines in PV costs of roughly 2-4% annually, independent of local
learning effects. The policy generosity coefficient () is consistently negative, significant and
small, indicating that more generous current incentives are associated with lower prices, as
expected. Additional controls behave as expected: larger systems are cheaper per watt, while
technology upgrades such as optimizers and microinverters increase costs.

My regression results support the consensus view in the literature that rooftop solar panel
installations have experienced learning effects, and state-level experience and markets matter
more than purely local and firm learning. Moreover, exogenous time trends are a major driver
of cost declines, reflecting global supply chain improvements and technological change. The

contribution of these results to existing literature is to provide estimates for both OLS and
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IV specifications, confirming that OLS may overstate firm-level learning and that state-level

cumulative capacity passes IV robustness.

3 Model

Motivated by these empirical observations, I develop a heterogeneous agent dynamic
stochastic general equilibrium (DSGE) model with incomplete markets (i.e., Aiyagari-Bewley-
Huggett models, building on Bewley (1977), Huggett (1993), and Aiyagari (1994)), with
the inclusion of costly clean energy adoption decisions and environmental externalities. The
model has discrete time and infinite horizon. There is a continuum of households indexed by
i € [0,1]. Consumers supply an exogenous amount of labor, receive wage income, accumulate
assets in physical capital, and rent out capital to firms. The labor supply is stochastic and is
governed by an idiosyncratic shock. Consumers can self-insure by accumulating assets subject
to a borrowing constraint.

Households have preferences over consumption and ambient air pollution. Consumption
requires energy use, and energy use is assumed to be an affine function of final good
consumption. This assumption implies that the expenditure share of energy is larger for
households with lower consumption levels, which is an empirical fact documented in Table 2.
Consumers have two energy technology options: old fossil (dirty) energy and new renewable
(clean) energy. Energy produced by the two technologies are perfect substitutes for each other.
However, energy consumption through the old technology creates ambient air pollution — a
flow variable that results in utility damages to consumers — a negative externality to society.
Before the clean energy technology is available for household adoption, all households use the
old energy technology and the economy is in the initial steady state.

Once the aforementioned clean energy technology is available, consumers can switch to a
clean energy source by deploying technology. For example, a consumer can adopt rooftop
solar panels to generate electricity with a one-time investment cost, and after having adopted,
they will use the clean energy in perpetuity. The unit cost of clean energy is lower than the
unit cost of dirty energy, but the initial investment cost is very high. Specifically, the clean
energy technology investment is lumpy: it requires a large one-time and irreversible upfront
cost, and once the investment is made, it cannot be recovered. As the scale of clean energy
adoption increases, the investment cost decreases due to learning-by-doing spillover effects.
After a sufficiently long time, all households will have adopted the clean energy technology
and the economy will be in a new steady state: the terminal steady state.

Firms combine capital and labor to produce the final good (used for consumption and

investment). The negative externality generated by dirty energy consumption is not internal-
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ized by the firms or consumers, but leads to a fraction of output being lost due to damages.
The loss of utility will be greater for poorer households due to decreasing marginal utility
of consumption. Both firms and consumers act competitively and take prices as given. The
government collects labor income taxes and uses the revenue to subsidize the investment
cost of adopting clean energy technology and returns any excess tax revenues to consumers

lump-sum.

3.1 Consumers

Each household is infinitely lived and has preferences over consumption and ambient air

pollution. At time ¢, a household’s individual state is described by a vector z; defined as:
2 = (ay, by, 8) € 2,

where a; € A = [0, 00) is the household’s risk-free asset holding at the beginning of period
t, ¢y € L is the idiosyncratic labor productivity endowment at time ¢, and s; € {0, 1} is the
household’s utilization status of the clean energy technology at time ¢, where s; = 0 indicates
that the household is using the fuel combusting old energy technology and s; = 1 is the new

clean energy technology. Define the measurable space (Z,B(Z)), where:
B(Z) = B(A) x P(£) x P({0,1}),

with B(A) being the Borel o-algebra on A and P(-) the power set. The cross-sectional
distribution of households over the state space at time t is represented by a probability
measure ¢, € M, where M is the set of all Borel probability measures on (Z, B(Z)). For
any measurable set B € B(Z), ®,(B) is the fraction of households with states in B at time t.
[ will denote ®4(B) by ®; when there is no ambiguity. Aggregate objects are computed as
integrals with respect to the invariant cross-sectional measure over states, following Huggett
(1993).

Each household supplies one unit of time endowment inelastically to the labor market
with labor productivity ¢; that follows a finite-state Markov chain with transition matrix
m(¢'|¢) and a unique invariant distribution IT1(¢). Households derive utility from consumption

and ambient air pollution according to:

Eo

> BU(a, X»] ,
t=0

where 5 € (0,1) is the discount factor, ¢; is consumption at time ¢, and X, denotes the
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aggregate ambient air pollution at time ¢. U(+, -) is a strictly increasing and concave one-period
utility function in its first argument, strictly decreasing and convex in its second argument,
and Eg is the mathematical expectation conditioned on the consumer’s time-0 information.

The household budget constraint is:
Ct + A1 + (jtet(l — St> + gtetst + pt(l — Tt)St = wt(l — T@)gt + (1 + rt)at + E,

subject to the borrowing constraint:

at+1 Z a,

where e(+) is the energy consumption function that maps household’s consumption to energy
demand, w; and r; denote the wage and interest rate, respectively, ¢; and q, are the exogenous
unit energy prices under dirty and clean energy technologies, respectively, with 4, <q for
all t, st € {0,1} is the household’s utilization status of the clean technology, where s! = 0
indicates that the household is using the fuel combusting old energy technology and s! =1 is
the new clean energy technology, S¢ € {0,1} is the irreversible binary technology adoption
decision, p; is the one-time clean energy technology adoption cost, 7; is the uniform tax credit
(subsidy) for the clean energy technology investment cost, 7¢ is the exogenous labor income
tax rate, and T} is the lump-sum transfer. The borrowing limit a¢ < 0 is exogenous and the
same for all households.

The discrete technology adoption choice is the main extension of the model from the
standard Aiyagari model. The adoption decision, Sy, is a binary choice that is made at the
beginning of each period. The adoption decision is irreversible and households who adopt
the clean technology in period ¢ will use the clean technology in all future periods. This
irreversible adoption decision can be expressed as the difference between the household’s next
period utilization status of the clean technology and the current period’s utilization status of
the clean technology:

St = St11 — St, with s;11 > s, for all ¢.

The assumption of irreversibility is a reasonable first step, but future work could consider

extensions such as depreciation and replacement of equipment.

3.2 Producers

There is a continuum of competitive firms (with measure normalized to one) producing

the consumption good using capital and labor. The production function is:

Y;f - F(Kt>Lt)7
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where Y; is the final output, K; and L; are capital and labor demands, respectively, and F'(-, ")
is a constant returns to scale production function with inputs K; and L;. The representative

firm takes the factor prices r; and w; as given and maximizes its profits each period.

3.3 Government

The government collects tax revenue by taxing every household’s labor earnings at rate
7!, uses a portion of its tax revenue to finance the subsidies outlayed for technology adoption
investment at rate 7;, and returns the remainder of its revenue as a uniform lump-sum transfer

T; to each household in each period t. Thus, the government budget constraint is:

/ ngtdq)t = / (T;j + TtptSt) dq)t, Vt. (5)
Z Z

3.4 Ambient Air Pollution

The ambient air pollution each period, X, is determined by the flow of energy consumption

during the period with the following mapping:

X, =0 ( /Z e(er)(1 — st)d®t> | (6)

where Q(+) is an increasing function that maps the total period ¢ energy consumption of old
energy technology users to ambient air pollution. In summary, the air pollution is a function
of the total energy consumption of the population that has not adopted low-carbon energy
technology, and dirty energy consumption only creates a negative externality within the same

period of its generation.

3.5 Learning-by-Doing Spillover

The one-time investment cost of the clean energy technology, p;, decreases as the cumulative
adoption of the clean energy technology increases due to learning-by-doing spillover effects.
As T introduced in subsection 2.3, the learning-by-doing spillover effects can be modeled using
a power-law of learning function. Specifically, I assume that the adoption cost is a function
of the cumulative adoption of the clean energy technology in the economy before period ¢,
denoted by Z;, defined as

Zt:/stdq)ta (7)
Z
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and an exogenous time decay component, as stated in equation (1). Thus, the adoption cost

function is:
P =po- Z; - exp(—At), (8)

where py > 0 is the initial adoption cost when the technology is first introduced, £ > 0 is the
learning-by-doing parameter that captures the rate of cost reduction with each doubling of
cumulative adoption, and A > 0 is the rate of exogenous time decay that captures the cost
declines unexplained by local learning-by-doing spillover effects, such as global supply chain
improvements and technological change.

The learning-by-doing spillover effects create a positive externality to society, because as
more households adopt the clean energy technology, the adoption cost decreases for all future
adopters. Modeling the learning-by-doing spillover allows me to evaluate the progressivity
of subsidies in a richer sense than just pecuniary transfers, as subsidies also accelerate the

learning-by-doing process and thus, the cost declines for future adopters.

3.6 Feasibility

In equilibrium, the market clearing conditions for the capital and labor markets are:

Kt:/atdq)t,
Z

Lt:/gtdét
Z

where the left-hand side of each equation is the total demand for the factor and the right-hand
side is the total supply of the factor. Denote the market-clearing quantities of aggregate

capital and labor by K; and L;, respectively. The goods market clearing condition is:
/ [ct + qe(c) (1 — s¢) + ge(cr)se —i—ptSt] dd, = F(Ky, L) + (1 = 0) Ky — Ky,
z

where ¢ is the depreciation rate of aggregate capital stock.

3.7 Recursive Formulation

The model can be formulated recursively. A household’s consumption, saving, and adoption
decision is governed by its three individual state variables, z;. In addition, there is one aggregate
state variable, the distribution of households across the individual state variables, ®;. The
ambient air pollution index is not a state variable because it is assumed to be a flow variable

and a function of only the current period’s aggregate emissions from dirty energy consumption,
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and thus, is a function of ®; alone. The definition of the initial and terminal recursive and

stationary competitive equilibria are provided in the Appendix B.1.

3.7.1 Transitional Dynamics

The main focus of the analysis is the transition between the initial steady state with no
clean energy technology available to the terminal steady state with every household utilizing
the clean energy technology. During the transition, households face the adoption choice
Sy € {0,1}, which is irreversible, such that:

St41 = S¢ + 5S¢ > 5.

The Bellman equation of a household who has not adopted the clean technology and is in

state (a, £, 0) at the beginning of period t is given by:

W(atagtvo; (I)t> =

max Ulce, Xi) + BB { Vi [wi(1 = 70 + (1 + ri)ag + T; — ¢ — Geelcr), b, 05 Pyga ]|}
max < ‘=

max Uler, Xy) + PE {Vt+1[wt(1 - Té)ﬁt + (1 +r)a + Ty — ¢ — qe(cr) — pe(1 — 71), b, 1 @t+1]|€t}

subject to @, = I'y(Py),
(9)

where I'; : M — M is the aggregate law of motion in period ¢ governing the distribution of
households across the state variables’ tomorrow as a function of the distribution today, and E,
is the expectation operator conditioned on the consumer’s time ¢ information. A household in
state s; = 0 at the beginning of period ¢ will choose to adopt the clean energy technology, i.e.,
set Sy = 1 and be in state s;.1 = 1 at the beginning of period ¢ + 1, if the value of adopting is
greater than the value of not adopting, i.e., if the second term in the maximization operator
is greater than the first term. In the period that follows the decision to adopt, the household

is in state (a4, £;, 1) at the beginning of period ¢ and have the Bellman equation given by:

Vi(ag, by, 1; @) = max Ulc, Xy) + BE, {Vt+1[wt(1 — 0+ L+ r)a+ T, — ¢ — Qte(ct)7 by, 1 (I)t+1]|€t} )

subject to ®;q = ['y(Py).
(10)

Definition 1 Given an initial distribution ®; € M, fiscal policies 7%, {1 }22,, and energy

prices {(jt,gt}fio, a competitive equilibrium is a sequence of: household value and policy
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Junctions {Vi, ¢, a1, St, Se41 )20, aggregate factor stocks, { Ky, Li}52,, prices {w,r, pi}io,
government transfers {T;}2,, ambient air pollution levels {X;}:2,, adoption stocks {Z:}:2,,
and distributions {®,}2, C M, such that for all t:

1. Household optimization. The housechold’s value function V; solves the house-
hold Bellman equation given (wt,rt,pt,qt,gt,Té,Tt,Tt,Xt,(I)t), with policy functions
(¢t ai11, Se41,St) satisfying the budget and borrowing constraints, and the adoption

wrreversibility constraint.

2. Factor prices. Factor prices are determined by the marginal products of capital and

labor:

s = FK(Kt,Lt),
Wy = FL(Kt7Lt)'

where F}; is the first order partial derivative of F with respect to its input j.

3. Government budget constraint. Government budget constraint holds with equality:

/ ngtdét = E ‘I— / TptSt(at, Eta St)dq)t'
zZ zZ

4. Ambient air pollution. Given the distribution of households ®; and the policy

function ci(ayg, by, 8¢), the ambient air pollution level X, satisfies:

X, =0 (/Ze(ct(at,ﬁt,()))dq)t) |

5. Cumulative adoption. Given the distribution of households @, the cumulative

Zt:/Stdq)t.
Z

6. Adoption cost. Given the cumulative adoption level Z;, adoption cost satisfies:

adoption level Z; satisfies:

Pi = Po - Zt_f -exp(—At).
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7. Market clearing. The factor markets clear:

Ky :/atJrl(atagtvSt)dq)tv
Z

Lt:/gtdq)t,
zZ

and the goods market clearing condition:

/ [ce(ae, b, s¢) + ara(ar, b, s¢) + qece(ag, by 5)) (1 — s¢) + qe(ci(ag, by, s¢))st — peSilag, 4y, st)] d®
z

== F(Kt, Lt) + (1 - 5)Kt - Kt+1.

8. Aggregate law of motion. The aggregate law of motion 'y is induced by the transi-
tion probabilities and optimal policies a;1(a,l,s), Si(a,l,s), and is explicitly stated in
Appendiz B.3.

The model’s key innovations are the irreversible binary adoption decision with subsidies and
the learning-by-doing spillover effects that endogenously lower adoption costs as cumulative
adoption rises. Together, these features allow me to study the welfare implications of the clean
energy transition and the progressivity of subsidies in a richer sense than pecuniary transfers
alone: subsidies not only redistribute resources, but also accelerate learning-by-doing and
thereby reduce costs for future adopters. Furthermore, my model allows for heterogeneous
impacts of pollution on households with different income levels, which is another feature to
study the progressivity of subsidies. The next section describes the calibration of the model
for the quantitative analysis. Standard parameters are taken from existing literature, while
the parameters associated with the novel adoption and learning-by-doing mechanisms are

calibrated using microdata and reduced-form estimates.

4 Quantitative Analysis

Having laid out the structure of the model, I now turn to its quantitative implementation.
To evaluate the distributional and welfare effects of clean energy subsidies, the model must
be calibrated to match salient features of the US economy and the residential energy sector.
The quantitative analysis proceeds in two steps. First, I describe the parameterization of
functional forms and the calibration of the model parameters, distinguishing between those
taken from the macroeconomics literature, those pinned down by empirical moments from

household- and installation-level data, and those estimated in my own empirical analysis
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(such as the learning-by-doing elasticity). Second, I outline the computational methods used
to solve the model, in the initial and terminal steady states, and during the transition between
them under alternative policy scenarios. I defer the discussion of the pollution preference
block and its calibration to Section 6.2, where I revisit the baseline results with pollution
preferences activated.

I make functional assumptions for the household’s utility function, the final goods produc-
tion function, the dirty and clean energy production functions, the pollution function, and
the pollution damage function. I assume that the household’s preferences are represented by

a constant relative risk aversion (CRRA) utility function of the form:

| max{0, X — X}

u(e, X) = = —v—— (11)

where o > 0 is the coefficient of relative risk aversion for consumption, v > 0 scales ambient
pollution to utility units, X is the pollution threshold above which pollution starts to cause
utility losses, w > 0 makes damages to amplify at lower consumption levels, and ¢ is a
reference consumption level used to normalize the pollution damage term. Even though the
disutility of pollution is separable from the utility of consumption, the pollution damage
term is nonseparable in consumption and pollution, as pollution damages are larger when
consumption is lower. Importantly, marginal utility of consumption remains positive, % > 0,
and diminishing, % <0, forall ¢ >0 and X > 0.

Energy consumption function is an affine function of goods consumption with a nonzero

intercept term, with parameters 7y and 7;:

e(c) = no + me,

where 79 > 0 captures the baseline energy consumption that is independent of goods
consumption level, such as energy used for grid connection, while 7; captures the marginal
energy consumption associated with additional final goods consumption. The goods production

function is of Cobb-Douglas form:
F(K,L)= AK*L'"°,

where « is the output share of capital, and A is total factor productivity.

The ambient air pollution function is assumed to be linear in aggregate dirty energy
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consumption:

X=0 (/Z e(cr)(1 — st)dCD)
_, </Z e(c)(1— st)dCD) |

where 7 is the pollution intensity parameter of dirty energy consumption.

4.1 Calibration

The parameters disciplining the model to match the US economy can be divided into three
categories: (i) standard macroeconomic parameters; (ii) parameters pinned down to match
moments from data; and, (iii) estimated parameters. One period in the model corresponds
to one year, and the initial steady state corresp